Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034388547> ?p ?o ?g. }
- W2034388547 endingPage "131" @default.
- W2034388547 startingPage "107" @default.
- W2034388547 abstract "We have applied computer stereophotogrammetry to Apollo Lunar Surface Closeup Camera (ALSCC) pictures of the lunar surface to construct the first-ever digital topographic relief maps of undisturbed lunar soil over spatial scales from 85 μm to 8.5 cm. Using elevation histograms, fractal analysis, and Hapke's photometric roughness model we show that Apollo 14 (Fra Mauro) Imbrium ejecta is rougher than average Apollo 11 (Mare Tranquilitatis) and Apollo 12 (Oceanus Procellarum) mare surfaces at submillimeter to decimeter size-scales. We confirm the early result of K. Lumme et al. (1985, Earth Moon Planets33, 19–29) that the cumulative distribution of elevations for lunar soil is typically well described by Gaussian statistics. However, cumulative distributions are insensitive to asymmetries in the shapes of elevation histograms: Of 11 discrete elevation histograms we measured, about half exhibit significant deviations from Gaussian behavior. We also confirm Lumme et al.'s finding that the roughnesses of all lunar surfaces increase with decreasing size-scale. We further show that the scale dependence of roughness is well represented by fractal statistics. The rates of change of roughness with size scale, represented by fractal dimension D, are remarkably similar among terrians. After correcting for the contribution of large-scale roughness, our average value of D=2.31±0.06 falls within the range 2.0≤D≤2.4 reported from lunar radar studies. The amplitude of roughness, which we characterize with the rms slope angle at 1-mm scale, varies significantly among terrains. For lunar mare, the average rms slope angle is 16°±4°3 and that for Fra Mauro regolith is 25°±1°. By comparison to radar data, we suggest that the roughness of Fra Mauro (Imbrium ejecta) regolith is similar to that of lunar highland terrains. We find that the Gaussian slope distribution assumed in B. W. Hapke's model (1984, Icarus59, 41–59) adequately describes typical lunar regolith surfaces. A revised form of Hapke's equation that models realistic particle phase functions and the coherent backscatter opposition effect was fitted to disk-resolved lunar photometric observations and yields estimates of θ=27±1° for highland and θ=24±1° for mare regolith. These values of θ as well as the implied relative highland:mare photometric roughness ratio are best matched in our elevation data by the cummulative contributions of surface topography covering all scales greater than 0.1 mm. Less than 5% of the photometrically detected roughness of lunar regolith is contributed by surface relief at scales larger than 8 cm. This conclusion implies that values of θ derived from whole-disk and disk-resolved photometry, respectively, may be taken to represent the same physical quantity. In addition, particulate samples used in goniophotometric measurements should not be assumed to be photometrically smooth (i.e., θ=0°), as is often done in laboratory applications of Hapke's photometric model. The predicted photometric roughness at size scales of 0.1 mm and less significantly exceed photometric estimates and suggests that there exists a measurable size scale below which topographic relief either is not photometrically detectable or is not represented in the Hapke model as macroscopic roughness." @default.
- W2034388547 created "2016-06-24" @default.
- W2034388547 creator A5024636188 @default.
- W2034388547 creator A5091447887 @default.
- W2034388547 date "1999-09-01" @default.
- W2034388547 modified "2023-10-14" @default.
- W2034388547 title "Submillimeter-Scale Topography of the Lunar Regolith" @default.
- W2034388547 cites W1669655639 @default.
- W2034388547 cites W1963630012 @default.
- W2034388547 cites W1964733267 @default.
- W2034388547 cites W1965725677 @default.
- W2034388547 cites W1967150870 @default.
- W2034388547 cites W1968169499 @default.
- W2034388547 cites W1969216903 @default.
- W2034388547 cites W1970822324 @default.
- W2034388547 cites W1977079104 @default.
- W2034388547 cites W1984426445 @default.
- W2034388547 cites W1985744438 @default.
- W2034388547 cites W1987664506 @default.
- W2034388547 cites W1992475261 @default.
- W2034388547 cites W1996534806 @default.
- W2034388547 cites W2002808277 @default.
- W2034388547 cites W2003635667 @default.
- W2034388547 cites W2019186508 @default.
- W2034388547 cites W2021767482 @default.
- W2034388547 cites W2023220299 @default.
- W2034388547 cites W2024063609 @default.
- W2034388547 cites W2024666803 @default.
- W2034388547 cites W2026428184 @default.
- W2034388547 cites W2028245703 @default.
- W2034388547 cites W2029150784 @default.
- W2034388547 cites W2030082211 @default.
- W2034388547 cites W2036322409 @default.
- W2034388547 cites W2037980631 @default.
- W2034388547 cites W2040364713 @default.
- W2034388547 cites W2044540425 @default.
- W2034388547 cites W2045221733 @default.
- W2034388547 cites W2048582143 @default.
- W2034388547 cites W2050735287 @default.
- W2034388547 cites W2061230099 @default.
- W2034388547 cites W2061915345 @default.
- W2034388547 cites W2066630218 @default.
- W2034388547 cites W2068141725 @default.
- W2034388547 cites W2070490009 @default.
- W2034388547 cites W2078222544 @default.
- W2034388547 cites W2078366250 @default.
- W2034388547 cites W2081231077 @default.
- W2034388547 cites W2081251923 @default.
- W2034388547 cites W2081479620 @default.
- W2034388547 cites W2089059151 @default.
- W2034388547 cites W2116456099 @default.
- W2034388547 cites W2135060895 @default.
- W2034388547 cites W2155614525 @default.
- W2034388547 cites W2159012223 @default.
- W2034388547 cites W2170763626 @default.
- W2034388547 cites W2922849514 @default.
- W2034388547 cites W4361745707 @default.
- W2034388547 cites W83127277 @default.
- W2034388547 doi "https://doi.org/10.1006/icar.1999.6160" @default.
- W2034388547 hasPublicationYear "1999" @default.
- W2034388547 type Work @default.
- W2034388547 sameAs 2034388547 @default.
- W2034388547 citedByCount "124" @default.
- W2034388547 countsByYear W20343885472012 @default.
- W2034388547 countsByYear W20343885472013 @default.
- W2034388547 countsByYear W20343885472014 @default.
- W2034388547 countsByYear W20343885472015 @default.
- W2034388547 countsByYear W20343885472016 @default.
- W2034388547 countsByYear W20343885472017 @default.
- W2034388547 countsByYear W20343885472018 @default.
- W2034388547 countsByYear W20343885472019 @default.
- W2034388547 countsByYear W20343885472020 @default.
- W2034388547 countsByYear W20343885472021 @default.
- W2034388547 countsByYear W20343885472022 @default.
- W2034388547 countsByYear W20343885472023 @default.
- W2034388547 crossrefType "journal-article" @default.
- W2034388547 hasAuthorship W2034388547A5024636188 @default.
- W2034388547 hasAuthorship W2034388547A5091447887 @default.
- W2034388547 hasBestOaLocation W20343885471 @default.
- W2034388547 hasConcept C107365816 @default.
- W2034388547 hasConcept C121332964 @default.
- W2034388547 hasConcept C127313418 @default.
- W2034388547 hasConcept C1276947 @default.
- W2034388547 hasConcept C134306372 @default.
- W2034388547 hasConcept C161509811 @default.
- W2034388547 hasConcept C161840515 @default.
- W2034388547 hasConcept C17409809 @default.
- W2034388547 hasConcept C179537507 @default.
- W2034388547 hasConcept C181843262 @default.
- W2034388547 hasConcept C199289684 @default.
- W2034388547 hasConcept C205649164 @default.
- W2034388547 hasConcept C26546657 @default.
- W2034388547 hasConcept C2777139587 @default.
- W2034388547 hasConcept C2778755073 @default.
- W2034388547 hasConcept C2780472129 @default.
- W2034388547 hasConcept C33110843 @default.
- W2034388547 hasConcept C33923547 @default.
- W2034388547 hasConcept C37054046 @default.