Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034394887> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2034394887 abstract "The cumulative effects of higher-order correlations and spin-wave interactions are represented in the usual versions of a practical (first-order) Green's-function theory of the Heisenberg ferromagnet by the renormalization of the spin-wave energies. The problem of deriving the appropriate renormalization factor $R$ in a given temperature regime based on a comparison with some exact result is considered. To this end, Dyson's rigorous asymptotic series for the spontaneous magnetization $ensuremath{sigma}$ and the free energy at very low temperatures are used as a boundary condition on the theory to derive necessary conditions on $R$. Spectral relations are then used to derive an expression for $R$ of the form ${h}^{frac{(1+ensuremath{xi})}{(2+ensuremath{xi})}}$, where $h$ is the average energy $〈mathcal{H}〉$ of the system measured in units of the ground-state energy; 1, $ensuremath{xi}$ are certain relative contributions to the ${T}^{4}$ term in $ensuremath{sigma}$ and represent the leading effects of the dynamical interaction of spin waves, respectively, in the Born and in higher orders. The phenomenological second random-phase approximation is a special case of this form, corresponding to the retention of only the Born in the above. The explicit occurrence of $R$ (due to a summation over renormalized spin waves) in the spectral relation for the Hamiltonian is exploited to eliminate $h$ and find a result for $R$ in terms of the customary parameters of a first-order theory, that is automatically moment conserving. From this result, other expressions for $R$ that are equivalent to it at low temperatures, including that of Callen's decoupling scheme, are derived. The differences and difficulties that arise in the special case $S=frac{1}{2}$ are brought out clearly and discussed. The appropriate modulation that the $R$ factor of the randomphase must undergo in this case in order to lead to the correct low-temperature series for $ensuremath{sigma}$ is deduced. It is also proved that it is impossible for a linearized Green's-function theory for the $S=frac{1}{2}$ ferromagnet to yield correct results at low $T$ for both $ensuremath{sigma}$ and the specific heat if the theory is of the pure pole type (the Green's function is given by a magnon pole term alone) with a wave-vector-independent renormalization of the spin wave spectrum: it is necessary to have at least a $k$-dependent $R$, or a dispersive part in addition to the pole term. Writing the spectral relation for the Hamiltonian in terms of the spin-spin correlation functions, is is shown that theories of the above kind (pole type, with $k$-independent $R$) also suffer from a serious defect near ${T}_{C}$, for all $S$. The central role of the longitudinal correlation is emphasized and the conditions necessary for its proper determination to ensure a consistent linearized theory are discussed. The detailed derivation of a theory with the requisite characteristics will be presented in another paper." @default.
- W2034394887 created "2016-06-24" @default.
- W2034394887 creator A5028558560 @default.
- W2034394887 date "1975-01-01" @default.
- W2034394887 modified "2023-09-27" @default.
- W2034394887 title "Spin-wave renormalization in the Heisenberg ferromagnet" @default.
- W2034394887 cites W1965494889 @default.
- W2034394887 cites W1965560888 @default.
- W2034394887 cites W1992884170 @default.
- W2034394887 cites W1993156949 @default.
- W2034394887 cites W2005670691 @default.
- W2034394887 cites W2013517221 @default.
- W2034394887 cites W2013577612 @default.
- W2034394887 cites W2013693885 @default.
- W2034394887 cites W2014462794 @default.
- W2034394887 cites W2015449166 @default.
- W2034394887 cites W2015716600 @default.
- W2034394887 cites W2018977360 @default.
- W2034394887 cites W2020794008 @default.
- W2034394887 cites W2021300835 @default.
- W2034394887 cites W2027038268 @default.
- W2034394887 cites W2045956857 @default.
- W2034394887 cites W2047309590 @default.
- W2034394887 cites W2094403964 @default.
- W2034394887 cites W2297253696 @default.
- W2034394887 cites W2316093756 @default.
- W2034394887 cites W2327840218 @default.
- W2034394887 cites W4235838482 @default.
- W2034394887 cites W43495766 @default.
- W2034394887 doi "https://doi.org/10.1103/physrevb.11.256" @default.
- W2034394887 hasPublicationYear "1975" @default.
- W2034394887 type Work @default.
- W2034394887 sameAs 2034394887 @default.
- W2034394887 citedByCount "7" @default.
- W2034394887 crossrefType "journal-article" @default.
- W2034394887 hasAuthorship W2034394887A5028558560 @default.
- W2034394887 hasConcept C10138342 @default.
- W2034394887 hasConcept C113603373 @default.
- W2034394887 hasConcept C121332964 @default.
- W2034394887 hasConcept C126255220 @default.
- W2034394887 hasConcept C130787639 @default.
- W2034394887 hasConcept C162324750 @default.
- W2034394887 hasConcept C166124518 @default.
- W2034394887 hasConcept C182306322 @default.
- W2034394887 hasConcept C201665358 @default.
- W2034394887 hasConcept C33923547 @default.
- W2034394887 hasConcept C37914503 @default.
- W2034394887 hasConcept C42704618 @default.
- W2034394887 hasConcept C44221107 @default.
- W2034394887 hasConcept C62520636 @default.
- W2034394887 hasConcept C82217956 @default.
- W2034394887 hasConcept C97355855 @default.
- W2034394887 hasConceptScore W2034394887C10138342 @default.
- W2034394887 hasConceptScore W2034394887C113603373 @default.
- W2034394887 hasConceptScore W2034394887C121332964 @default.
- W2034394887 hasConceptScore W2034394887C126255220 @default.
- W2034394887 hasConceptScore W2034394887C130787639 @default.
- W2034394887 hasConceptScore W2034394887C162324750 @default.
- W2034394887 hasConceptScore W2034394887C166124518 @default.
- W2034394887 hasConceptScore W2034394887C182306322 @default.
- W2034394887 hasConceptScore W2034394887C201665358 @default.
- W2034394887 hasConceptScore W2034394887C33923547 @default.
- W2034394887 hasConceptScore W2034394887C37914503 @default.
- W2034394887 hasConceptScore W2034394887C42704618 @default.
- W2034394887 hasConceptScore W2034394887C44221107 @default.
- W2034394887 hasConceptScore W2034394887C62520636 @default.
- W2034394887 hasConceptScore W2034394887C82217956 @default.
- W2034394887 hasConceptScore W2034394887C97355855 @default.
- W2034394887 hasLocation W20343948871 @default.
- W2034394887 hasOpenAccess W2034394887 @default.
- W2034394887 hasPrimaryLocation W20343948871 @default.
- W2034394887 hasRelatedWork W3031379044 @default.
- W2034394887 isParatext "false" @default.
- W2034394887 isRetracted "false" @default.
- W2034394887 magId "2034394887" @default.
- W2034394887 workType "article" @default.