Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034403867> ?p ?o ?g. }
- W2034403867 endingPage "1134" @default.
- W2034403867 startingPage "1125" @default.
- W2034403867 abstract "Carotenoids are naturally occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photoinduced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment−protein complexes in the proximity of chlorophylls. A few three-dimensional structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates the elucidation of correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids lutein, neoxanthin, and violaxanthin to transfer energy to chlorophyll. The third, the peridinin-chlorophyll-protein (PCP) from the dinoflagellate Amphidinium carterae, is the only known complex in which the bound carotenoid (peridinin) pigments outnumber the chlorophylls. The last is xanthorhodopsin from the eubacterium Salinibacter ruber. This complex contains the carotenoid salinixanthin, which transfers energy to a retinal chromophore. The carotenoids in these pigment−protein complexes transfer energy with high efficiency by optimizing both the distance and orientation of the carotenoid donor and chlorophyll acceptor molecules. Importantly, the versatility and robustness of carotenoids in these light-harvesting pigment−protein complexes have led to their incorporation in the design and synthesis of nanoscale antenna systems. In these bioinspired systems, researchers are seeking to improve the light capture and use of energy from the solar emission spectrum." @default.
- W2034403867 created "2016-06-24" @default.
- W2034403867 creator A5056255337 @default.
- W2034403867 creator A5080580467 @default.
- W2034403867 date "2010-05-06" @default.
- W2034403867 modified "2023-10-01" @default.
- W2034403867 title "Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids" @default.
- W2034403867 cites W1528803707 @default.
- W2034403867 cites W1965734238 @default.
- W2034403867 cites W1970229241 @default.
- W2034403867 cites W1971451432 @default.
- W2034403867 cites W1973962425 @default.
- W2034403867 cites W1976127857 @default.
- W2034403867 cites W1976813425 @default.
- W2034403867 cites W1978936812 @default.
- W2034403867 cites W1981353021 @default.
- W2034403867 cites W1984136893 @default.
- W2034403867 cites W1984701121 @default.
- W2034403867 cites W1987969999 @default.
- W2034403867 cites W1988146786 @default.
- W2034403867 cites W1998644238 @default.
- W2034403867 cites W1999680447 @default.
- W2034403867 cites W2001833888 @default.
- W2034403867 cites W2002542949 @default.
- W2034403867 cites W2006143728 @default.
- W2034403867 cites W2007270142 @default.
- W2034403867 cites W2008467685 @default.
- W2034403867 cites W2010689877 @default.
- W2034403867 cites W2011060480 @default.
- W2034403867 cites W2011793601 @default.
- W2034403867 cites W2013481328 @default.
- W2034403867 cites W2014911581 @default.
- W2034403867 cites W2017627877 @default.
- W2034403867 cites W2025494727 @default.
- W2034403867 cites W2034698496 @default.
- W2034403867 cites W2043680055 @default.
- W2034403867 cites W2043887631 @default.
- W2034403867 cites W2046686958 @default.
- W2034403867 cites W2048590770 @default.
- W2034403867 cites W2048794698 @default.
- W2034403867 cites W2049247543 @default.
- W2034403867 cites W2050929241 @default.
- W2034403867 cites W2051410732 @default.
- W2034403867 cites W2051490148 @default.
- W2034403867 cites W2052837667 @default.
- W2034403867 cites W2061815925 @default.
- W2034403867 cites W2066622934 @default.
- W2034403867 cites W2084762724 @default.
- W2034403867 cites W2091608761 @default.
- W2034403867 cites W2092312863 @default.
- W2034403867 cites W2094705535 @default.
- W2034403867 cites W2095471229 @default.
- W2034403867 cites W2097552134 @default.
- W2034403867 cites W2102769319 @default.
- W2034403867 cites W2113923164 @default.
- W2034403867 cites W2116928722 @default.
- W2034403867 cites W2118345984 @default.
- W2034403867 cites W2119110520 @default.
- W2034403867 cites W2119513966 @default.
- W2034403867 cites W2127821828 @default.
- W2034403867 cites W2128348369 @default.
- W2034403867 cites W2171064754 @default.
- W2034403867 cites W2171994520 @default.
- W2034403867 cites W4244469360 @default.
- W2034403867 cites W4300344884 @default.
- W2034403867 cites W53716013 @default.
- W2034403867 doi "https://doi.org/10.1021/ar100030m" @default.
- W2034403867 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2923278" @default.
- W2034403867 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20446691" @default.
- W2034403867 hasPublicationYear "2010" @default.
- W2034403867 type Work @default.
- W2034403867 sameAs 2034403867 @default.
- W2034403867 citedByCount "278" @default.
- W2034403867 countsByYear W20344038672012 @default.
- W2034403867 countsByYear W20344038672013 @default.
- W2034403867 countsByYear W20344038672014 @default.
- W2034403867 countsByYear W20344038672015 @default.
- W2034403867 countsByYear W20344038672016 @default.
- W2034403867 countsByYear W20344038672017 @default.
- W2034403867 countsByYear W20344038672018 @default.
- W2034403867 countsByYear W20344038672019 @default.
- W2034403867 countsByYear W20344038672020 @default.
- W2034403867 countsByYear W20344038672021 @default.
- W2034403867 countsByYear W20344038672022 @default.
- W2034403867 countsByYear W20344038672023 @default.
- W2034403867 crossrefType "journal-article" @default.
- W2034403867 hasAuthorship W2034403867A5056255337 @default.
- W2034403867 hasAuthorship W2034403867A5080580467 @default.
- W2034403867 hasBestOaLocation W20344038672 @default.
- W2034403867 hasConcept C121332964 @default.
- W2034403867 hasConcept C159467904 @default.
- W2034403867 hasConcept C178790620 @default.
- W2034403867 hasConcept C181500209 @default.
- W2034403867 hasConcept C183688256 @default.
- W2034403867 hasConcept C184779094 @default.
- W2034403867 hasConcept C185592680 @default.
- W2034403867 hasConcept C188231169 @default.
- W2034403867 hasConcept C193357725 @default.