Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034621134> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2034621134 abstract "Wittmaack (2007) did not agree with our suggestion (Oberdorster et al. 2005) that particle surface area is a more appropriate dose metric than particle mass or particle number when evaluating dose–response relationships of nanoparticle-induced pulmonary inflammation. According to his understanding of nanotoxicology and based on his calculations, he found particle number to work best as a dose metric. Throughout our review we pointed out that the surface area concept should be considered in the context of nanoparticle surface properties such as chemistry, charge, coating, crystallinity, porosity, and reactivity. For example, nano-titanium dioxide (TiO2) or nano-copper particles, very distinct from one another, will predictively create separate well-fitting surface area dose–response relationships. Yes, particle number is of importance as well, as we indicated in our review, but not as a direct dose metric.We would like to address some of the issues Wittmaack (2007) raised in his article. First, Wittmaack suggested that when expressing a pulmonary inflammatory response, a response metric is better done using the ratio of lavaged neutrophils (PMN; polymorphonuclear leukocytes) to macrophages instead of using the fraction of PMNs. Because the purpose of our review (Oberdorster et al. 2005) was not to describe these responses in mathematical terms (whether threshold, linear, or nonlinear) but rather to illustrate that dose–response relationships on a mass basis—but not on a surface area basis—are very different, the choice of the response metric is irrelevant. To demonstrate this, we present our data again (Figure 1), expressed as absolute numbers of elicited PMNs and as PMN/macrophage ratios as a function of administered mass (Figure 1A,B), number (Figure 1C,D), or surface area (Figure 1E,F) of fine and ultrafine (nanosized) TiO2. The dose–response relationships based on mass and surface area are essentially the same as those shown in our review (Oberdorster et al. 2005) using the percentage of elicited neutrophils.Figure 1Inflammatory cell response in lung lavage 24 hr after intratracheal instillation of fine (~ 250 nm) and ultrafine (20–30 nm) TiO2 expressed by different dose metrics [particle mass (A,B), number (C,D), and surface area (E,F)] and different response ...Second, regarding the issue of particle number being the best dose metric, the particle number dose–response relationships (Figure 1B) are several orders of magnitude apart for fine and ultrafine TiO2, whereas the surface area plot (Figure 1C) shows a good fit for the combined particle sizes. The reviewers of Wittmaack’s article (2007) apparently overlooked this flaw in his argument.Finally, Wittmaack (2007) calculated that the surface area for ultrafine TiO2 should be 77 m2/g and not 50 m2/g, as we reported (Oberdorster et al. 2005). He derived his value on the basis of the specific density of TiO2 (anatase) and a spherical primary particle size of 20 nm. BET surface area for this TiO2 (Degussa P25) has been measured independently by a number of investigators, including our group (Jwo et al. 2005; Long et al. 2006; Wahl et al. 2005), and ranges between 48 and 55 m2/g. There is no reason to mathematically manipulate this number to a value that is completely at odds with actual measurements. In contrast to the well-established surface area, the average primary particle size of TiO2 has not been firmly established, with values of 20–30 nm. Indeed, a size of 30 nm (calculated surface area, 51.2 m2/g) conforms best to the measured BET surface. Thus, we added particle number dose–response data for 30 nm TiO2 to Figure 1C and 1D; the order of magnitude difference of the dose response between fine and ultrafine particles is obvious, regardless of whether the ultrafines are considered to be 20 or 30 nm in size.We have concluded that of the three dose metrics discussed, particle number is the worst to describe nanoparticle-induced pulmonary inflammatory effects." @default.
- W2034621134 created "2016-06-24" @default.
- W2034621134 creator A5003294223 @default.
- W2034621134 creator A5016697206 @default.
- W2034621134 creator A5028332961 @default.
- W2034621134 date "2007-06-01" @default.
- W2034621134 modified "2023-10-15" @default.
- W2034621134 title "Concepts of Nanoparticle Dose Metric and Response Metric" @default.
- W2034621134 cites W1975837510 @default.
- W2034621134 cites W2028440527 @default.
- W2034621134 cites W2098281034 @default.
- W2034621134 cites W2155118487 @default.
- W2034621134 cites W2164752041 @default.
- W2034621134 doi "https://doi.org/10.1289/ehp.115-1892118" @default.
- W2034621134 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1892118" @default.
- W2034621134 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17589571" @default.
- W2034621134 hasPublicationYear "2007" @default.
- W2034621134 type Work @default.
- W2034621134 sameAs 2034621134 @default.
- W2034621134 citedByCount "57" @default.
- W2034621134 countsByYear W20346211342012 @default.
- W2034621134 countsByYear W20346211342013 @default.
- W2034621134 countsByYear W20346211342014 @default.
- W2034621134 countsByYear W20346211342015 @default.
- W2034621134 countsByYear W20346211342016 @default.
- W2034621134 countsByYear W20346211342017 @default.
- W2034621134 countsByYear W20346211342019 @default.
- W2034621134 countsByYear W20346211342020 @default.
- W2034621134 countsByYear W20346211342021 @default.
- W2034621134 countsByYear W20346211342022 @default.
- W2034621134 countsByYear W20346211342023 @default.
- W2034621134 crossrefType "journal-article" @default.
- W2034621134 hasAuthorship W2034621134A5003294223 @default.
- W2034621134 hasAuthorship W2034621134A5016697206 @default.
- W2034621134 hasAuthorship W2034621134A5028332961 @default.
- W2034621134 hasBestOaLocation W20346211341 @default.
- W2034621134 hasConcept C144133560 @default.
- W2034621134 hasConcept C155672457 @default.
- W2034621134 hasConcept C162853370 @default.
- W2034621134 hasConcept C171250308 @default.
- W2034621134 hasConcept C176217482 @default.
- W2034621134 hasConcept C192562407 @default.
- W2034621134 hasConcept C41008148 @default.
- W2034621134 hasConceptScore W2034621134C144133560 @default.
- W2034621134 hasConceptScore W2034621134C155672457 @default.
- W2034621134 hasConceptScore W2034621134C162853370 @default.
- W2034621134 hasConceptScore W2034621134C171250308 @default.
- W2034621134 hasConceptScore W2034621134C176217482 @default.
- W2034621134 hasConceptScore W2034621134C192562407 @default.
- W2034621134 hasConceptScore W2034621134C41008148 @default.
- W2034621134 hasIssue "6" @default.
- W2034621134 hasLocation W20346211341 @default.
- W2034621134 hasLocation W20346211342 @default.
- W2034621134 hasLocation W20346211343 @default.
- W2034621134 hasLocation W20346211344 @default.
- W2034621134 hasOpenAccess W2034621134 @default.
- W2034621134 hasPrimaryLocation W20346211341 @default.
- W2034621134 hasRelatedWork W2054697996 @default.
- W2034621134 hasRelatedWork W2469743300 @default.
- W2034621134 hasRelatedWork W266446692 @default.
- W2034621134 hasRelatedWork W2748952813 @default.
- W2034621134 hasRelatedWork W2795913521 @default.
- W2034621134 hasRelatedWork W2899084033 @default.
- W2034621134 hasRelatedWork W2908128570 @default.
- W2034621134 hasRelatedWork W2991626910 @default.
- W2034621134 hasRelatedWork W3014552397 @default.
- W2034621134 hasRelatedWork W397719860 @default.
- W2034621134 hasVolume "115" @default.
- W2034621134 isParatext "false" @default.
- W2034621134 isRetracted "false" @default.
- W2034621134 magId "2034621134" @default.
- W2034621134 workType "article" @default.