Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034653667> ?p ?o ?g. }
- W2034653667 endingPage "537" @default.
- W2034653667 startingPage "526" @default.
- W2034653667 abstract "•Gut microbial composition affects immune system function. •The immune system influences host microbial populations. •Microbiota diversity and composition may impact upon vaccine efficacy. •A mechanistic understanding should inform future vaccination strategies. Studies of the relationship between the microbiome and the development and function of the immune system are demonstrating novel concepts that could significantly alter the way we treat disease and promote wellness. Several diseases, including inflammatory bowel disease, allergy/asthma, and diabetes, are associated with changes in composition of the microbiome. Recent findings suggest novel complex mechanisms by which the microbiome impacts immune cell development and differentiation. A major implication of these findings is that the composition of microbiome may ultimately affect vaccine efficacy. We explore here the potential role of the microbiome in vaccine responses in the context of our growing understanding of the relationship between the gastrointestinal microbiota, resident immune cell populations, and systemic immunity. Studies of the relationship between the microbiome and the development and function of the immune system are demonstrating novel concepts that could significantly alter the way we treat disease and promote wellness. Several diseases, including inflammatory bowel disease, allergy/asthma, and diabetes, are associated with changes in composition of the microbiome. Recent findings suggest novel complex mechanisms by which the microbiome impacts immune cell development and differentiation. A major implication of these findings is that the composition of microbiome may ultimately affect vaccine efficacy. We explore here the potential role of the microbiome in vaccine responses in the context of our growing understanding of the relationship between the gastrointestinal microbiota, resident immune cell populations, and systemic immunity. the classification of humans or of other living organisms with an intestine based on similarities in their gut microbial communities as viewed through multivariate statistical methods. the presence of any pathology or inflammation in the intestine. immunization through oral, nasal or vaginal routes. vaccines administered through a non-mucosal surface (intravenous, intramuscular etc.). symbionts that are able to cause disease when the environmental conditions are altered. viable non-pathogenic microorganisms that confer health benefits by augmenting the activities of commensal microorganisms in the gut. Examples of these activities include biosynthesis of vitamin K, fermentation of indigestible dietary fiber, and competition with pathogenic microorganism for nutrients, among others. Probiotics can modulate the host immune response directly through interaction with intestinal epithelial cells (IEC) or immune cells in the gut, or indirectly through the modulation of the intestinal microbiota. The immunomodulatory effects of probiotics seem to be microbe species- and strain-specific. The most important benefit of probiotics is likely the maintenance of gut homeostasis (sustaining a balanced and beneficial flora). Currently, the most common species of probiotics used are Lactobacillus and Bifidobacterium species. non-digestible dietary supplements (mainly fiber/carbohydrates) that also offer benefit to the host by selectively stimulating the growth of particular species of bacteria (mainly Bifidobacterium). Oligofructoses are naturally occurring plant carbohydrates, consisting of fructose polymers and a terminal glucose molecule, and combined with other prebiotics show positive effects. The most extensively used prebiotics are fructans such as inulin, fructo-oligosacharides, and galacto-oligosaccharides. Because they are indigestible in the small intestine, they are fermented anaerobically in the colon to produce short-chain fatty acids (such as acetate, proprionate, and butyrate) that have been shown to modulate IEC function and favor the growth of other microbiota. organisms that live in a state of symbiosis – a state in which at least two different organisms reside in a niche and closely associate to the benefit of each organism in the interaction. substances added to the vaccine which can increase the systemic and local immune response to the particular vaccine. defined as the percentage reduction of disease incidence in a vaccinated group compared to an unvaccinated group. The vaccine efficacy is measured by double-blinded clinical trial, thereby measuring the ‘best-case scenario’ under strict and controlled conditions. It is very important to assess the safety of each new vaccine and rigorous assessment is required before regulatory authorities can license a vaccine. a measure of the ability of the vaccine to prevent disease in the ‘real world’. Vaccine effectiveness is proportional to the vaccine efficacy, but is influenced primarily by how well the target groups are immunized. Many factors can influence vaccine effectiveness, including the population immunized (age, prior exposure, genetic make-up etc.) and vaccine characteristics (mode of delivery, accessibility, stability etc)." @default.
- W2034653667 created "2016-06-24" @default.
- W2034653667 creator A5030919684 @default.
- W2034653667 creator A5058137170 @default.
- W2034653667 creator A5083940015 @default.
- W2034653667 date "2014-11-01" @default.
- W2034653667 modified "2023-10-16" @default.
- W2034653667 title "Influence of the microbiota on vaccine effectiveness" @default.
- W2034653667 cites W1606684438 @default.
- W2034653667 cites W1830886883 @default.
- W2034653667 cites W1893946689 @default.
- W2034653667 cites W1912285949 @default.
- W2034653667 cites W1966694479 @default.
- W2034653667 cites W1977948671 @default.
- W2034653667 cites W1979366969 @default.
- W2034653667 cites W1985043560 @default.
- W2034653667 cites W1988331683 @default.
- W2034653667 cites W1994063461 @default.
- W2034653667 cites W1998744803 @default.
- W2034653667 cites W1999696784 @default.
- W2034653667 cites W2000025778 @default.
- W2034653667 cites W2004774344 @default.
- W2034653667 cites W2005507128 @default.
- W2034653667 cites W2008520672 @default.
- W2034653667 cites W2017162748 @default.
- W2034653667 cites W2017614891 @default.
- W2034653667 cites W2018505426 @default.
- W2034653667 cites W2018938924 @default.
- W2034653667 cites W2019974636 @default.
- W2034653667 cites W2023196450 @default.
- W2034653667 cites W2023300612 @default.
- W2034653667 cites W2026987139 @default.
- W2034653667 cites W2032614954 @default.
- W2034653667 cites W2035133658 @default.
- W2034653667 cites W2037318849 @default.
- W2034653667 cites W2037403518 @default.
- W2034653667 cites W2039892708 @default.
- W2034653667 cites W2045838663 @default.
- W2034653667 cites W2049544033 @default.
- W2034653667 cites W2050417626 @default.
- W2034653667 cites W2050918847 @default.
- W2034653667 cites W2052554412 @default.
- W2034653667 cites W2052969143 @default.
- W2034653667 cites W2059835573 @default.
- W2034653667 cites W2061430541 @default.
- W2034653667 cites W2065174433 @default.
- W2034653667 cites W2067241083 @default.
- W2034653667 cites W2068234766 @default.
- W2034653667 cites W2070445709 @default.
- W2034653667 cites W2072417345 @default.
- W2034653667 cites W2073229622 @default.
- W2034653667 cites W2075558699 @default.
- W2034653667 cites W2083089709 @default.
- W2034653667 cites W2083349178 @default.
- W2034653667 cites W2088073606 @default.
- W2034653667 cites W2096891797 @default.
- W2034653667 cites W2097478615 @default.
- W2034653667 cites W2103561589 @default.
- W2034653667 cites W2106592931 @default.
- W2034653667 cites W2106829739 @default.
- W2034653667 cites W2107369528 @default.
- W2034653667 cites W2107758264 @default.
- W2034653667 cites W2108608915 @default.
- W2034653667 cites W2109273122 @default.
- W2034653667 cites W2110001653 @default.
- W2034653667 cites W2110389012 @default.
- W2034653667 cites W2117613892 @default.
- W2034653667 cites W2118697254 @default.
- W2034653667 cites W2120395138 @default.
- W2034653667 cites W2121017635 @default.
- W2034653667 cites W2122975235 @default.
- W2034653667 cites W2124106479 @default.
- W2034653667 cites W2131643987 @default.
- W2034653667 cites W2132518859 @default.
- W2034653667 cites W2135059394 @default.
- W2034653667 cites W2135904234 @default.
- W2034653667 cites W2140434051 @default.
- W2034653667 cites W2141605629 @default.
- W2034653667 cites W2147486943 @default.
- W2034653667 cites W2149547237 @default.
- W2034653667 cites W2150968312 @default.
- W2034653667 cites W2152819244 @default.
- W2034653667 cites W2153337503 @default.
- W2034653667 cites W2155922926 @default.
- W2034653667 cites W2156614434 @default.
- W2034653667 cites W2159323729 @default.
- W2034653667 cites W2161868263 @default.
- W2034653667 cites W2162088497 @default.
- W2034653667 cites W2164386968 @default.
- W2034653667 cites W2165472257 @default.
- W2034653667 cites W2166221745 @default.
- W2034653667 cites W2166562121 @default.
- W2034653667 cites W2168275695 @default.
- W2034653667 cites W2168457616 @default.
- W2034653667 cites W2170860777 @default.
- W2034653667 cites W2170925079 @default.
- W2034653667 cites W4250467159 @default.
- W2034653667 doi "https://doi.org/10.1016/j.it.2014.07.003" @default.