Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034669404> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2034669404 endingPage "104" @default.
- W2034669404 startingPage "101" @default.
- W2034669404 abstract "We study the dynamical behavior of additive D-dimensional (D≥1) cellular automata where the alphabet is any finite abelian group. This class of discrete time dynamical systems is a generalization of the systems extensively studied by many authors among which one may list [38], [44], [41]. Among our major contributions, there is the proof that topologically transitive additive D-dimensional cellular automata over a finite abelian group are ergodic. This result represents a solid bridge between the world of measure theory and that of topology and greatly extends previous results obtained in [12], [44] for linear CA over Z/mZ, i.e., additive CA in which the alphabet is the cyclic group Z/mZ and the local rules are linear combinations with coefficients in Z/mZ. In our scenario, the alphabet is any finite abelian group and the global rule is any additive map. This class of CA strictly contains the class of linear CA over (Z/mZ)n, i.e., with the local rule defined by n×n matrices with elements in Z/mZ which, in turn, strictly contains the class of linear CA over Z/mZ. In order to further emphasize that finite abelian groups are more expressive than Z/mZ we prove that, contrary to what happens in Z/mZ, there exist additive CA over suitable finite abelian groups which are roots (with arbitrarily large indices) of the shift map.As a relevant consequence of our results, we have that, for additive D-dimensional CA over a finite abelian group, ergodic mixing, weak ergodic mixing, ergodicity, topological mixing, weak topological mixing, topological total transitivity and topological transitivity are all equivalent properties. As a corollary, we see that invertible transitive additive CA are isomorphic to Bernoulli shifts. Furthermore, we prove that surjectivity implies openness for additive D-dimensional CA over a finite abelian group. Hence, we get that topological transitivity is equivalent to the well-known Devaney notion of chaos when D=1. Moreover, we provide a first characterization of strong transitivity for additive CA which we suspect to be true also for the general case." @default.
- W2034669404 created "2016-06-24" @default.
- W2034669404 creator A5028938531 @default.
- W2034669404 date "1998-04-01" @default.
- W2034669404 modified "2023-09-26" @default.
- W2034669404 title "Surjective linear cellular automata over m" @default.
- W2034669404 cites W1972738862 @default.
- W2034669404 cites W2000270556 @default.
- W2034669404 cites W2002600082 @default.
- W2034669404 cites W2007644884 @default.
- W2034669404 cites W2036123305 @default.
- W2034669404 cites W2039905289 @default.
- W2034669404 cites W2066306854 @default.
- W2034669404 doi "https://doi.org/10.1016/s0020-0190(98)00035-0" @default.
- W2034669404 hasPublicationYear "1998" @default.
- W2034669404 type Work @default.
- W2034669404 sameAs 2034669404 @default.
- W2034669404 citedByCount "3" @default.
- W2034669404 countsByYear W20346694042020 @default.
- W2034669404 crossrefType "journal-article" @default.
- W2034669404 hasAuthorship W2034669404A5028938531 @default.
- W2034669404 hasConcept C105795698 @default.
- W2034669404 hasConcept C114614502 @default.
- W2034669404 hasConcept C118615104 @default.
- W2034669404 hasConcept C119238805 @default.
- W2034669404 hasConcept C121332964 @default.
- W2034669404 hasConcept C122044880 @default.
- W2034669404 hasConcept C136170076 @default.
- W2034669404 hasConcept C16101541 @default.
- W2034669404 hasConcept C201779956 @default.
- W2034669404 hasConcept C202444582 @default.
- W2034669404 hasConcept C20725272 @default.
- W2034669404 hasConcept C2777404646 @default.
- W2034669404 hasConcept C2779483109 @default.
- W2034669404 hasConcept C2781311116 @default.
- W2034669404 hasConcept C33923547 @default.
- W2034669404 hasConcept C62520636 @default.
- W2034669404 hasConceptScore W2034669404C105795698 @default.
- W2034669404 hasConceptScore W2034669404C114614502 @default.
- W2034669404 hasConceptScore W2034669404C118615104 @default.
- W2034669404 hasConceptScore W2034669404C119238805 @default.
- W2034669404 hasConceptScore W2034669404C121332964 @default.
- W2034669404 hasConceptScore W2034669404C122044880 @default.
- W2034669404 hasConceptScore W2034669404C136170076 @default.
- W2034669404 hasConceptScore W2034669404C16101541 @default.
- W2034669404 hasConceptScore W2034669404C201779956 @default.
- W2034669404 hasConceptScore W2034669404C202444582 @default.
- W2034669404 hasConceptScore W2034669404C20725272 @default.
- W2034669404 hasConceptScore W2034669404C2777404646 @default.
- W2034669404 hasConceptScore W2034669404C2779483109 @default.
- W2034669404 hasConceptScore W2034669404C2781311116 @default.
- W2034669404 hasConceptScore W2034669404C33923547 @default.
- W2034669404 hasConceptScore W2034669404C62520636 @default.
- W2034669404 hasIssue "2" @default.
- W2034669404 hasLocation W20346694041 @default.
- W2034669404 hasOpenAccess W2034669404 @default.
- W2034669404 hasPrimaryLocation W20346694041 @default.
- W2034669404 hasRelatedWork W1964659390 @default.
- W2034669404 hasRelatedWork W2021460869 @default.
- W2034669404 hasRelatedWork W2024864046 @default.
- W2034669404 hasRelatedWork W2047246924 @default.
- W2034669404 hasRelatedWork W2274170473 @default.
- W2034669404 hasRelatedWork W2360309576 @default.
- W2034669404 hasRelatedWork W2375875135 @default.
- W2034669404 hasRelatedWork W2950271199 @default.
- W2034669404 hasRelatedWork W3035973969 @default.
- W2034669404 hasRelatedWork W4297625863 @default.
- W2034669404 hasVolume "66" @default.
- W2034669404 isParatext "false" @default.
- W2034669404 isRetracted "false" @default.
- W2034669404 magId "2034669404" @default.
- W2034669404 workType "article" @default.