Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034687002> ?p ?o ?g. }
- W2034687002 endingPage "958" @default.
- W2034687002 startingPage "943" @default.
- W2034687002 abstract "Infrared absorption spectra associated with the CO2 asymmetric stretch vibration have been recorded for weakly bonded gas-phase complexes of CO2 with HF, DF, HCl, DCl, and HBr, using tunable diode laser spectroscopy and a pulsed slit expansion (0.15×38 mm2) that provides >20 MHz overall resolution. Results obtained with CO2–HF are in agreement with earlier studies, in which the HF-stretch region near 3900 cm−1 was examined. In both cases, broad linewidths suggest subnanosecond predissociation. With CO2–DF, the natural linewidths are markedly narrower than with CO2–HF (e.g., 28 vs 182 MHz), and this difference is attributed to slower predissociation, possibly implicating resonances in the case of CO2–HF. Both CO2–HF and CO2–DF exhibited overlapping features: simple P and R branches associated with a linear rotor, and P and R branches containing doublets. As in earlier studies, the second feature can be assigned to either a slightly asymmetric rotor with Ka=1, or a hot band involving a low-frequency intermolecular bend mode. Results obtained with CO2–HCl are in excellent agreement with earlier microwave measurements on the ground vibrational state, and the vibrationally excited state is almost identical to the lower state. Like CO2–DF, linewidths of CO2–HCl and CO2–DCl are much sharper than those of CO2–HF, and in addition, CO2–HCl and CO2–DCl exhibited weak hot bands, as were also evident with CO2–HF and CO2–DF. Upon forming complexes with either HF or HCl, the asymmetric stretch mode of CO2 underwent a blue shift relative to uncomplexed CO2. This can be understood in terms of the nature of the hydrogen bonds, and ab initio calculations are surprisingly good at predicting these shifts. Deuteration of both HF and HCl resulted in further blue shifts of the band origins. These additional shifts are attributed to stronger intermolecular interactions, i.e., deuteration lowers the zero-point energy, and in a highly anharmonic field this results in a more compact average structure. While both HF and HCl complexes exhibit nearly linear geometries,CO2–HBr is asymmetric, with the Br–C symmetry line essentially perpendicular to the CO2 axis, and the H atom probably localized near one of the oxygens. Although the moments of inertia are insensitive to the location of the H atom in CO2–HBr, Bose–Einstein statistics require that odd K″a states are missing for C2v symmetry, as is observed with T-shaped CO2–(rare gas) complexes. However, we observe a full complement of odd and even Ka states, indicating that the H atom is not located symmetrically about the C2v axis on the time scale of the measurement. With CO2–HBr, the low gas-phase acidity of HBr and the high Br-atom polarizability encourage a qualitative change in the geometry relative to CO2–HCl and CO2–HF. This has valuable implications for photoinitiated reactions in such complexes." @default.
- W2034687002 created "2016-06-24" @default.
- W2034687002 creator A5007619612 @default.
- W2034687002 creator A5019467914 @default.
- W2034687002 creator A5048399204 @default.
- W2034687002 creator A5061896781 @default.
- W2034687002 date "1990-01-15" @default.
- W2034687002 modified "2023-10-14" @default.
- W2034687002 title "Infrared absorption spectroscopy of CO2–HX complexes using the CO2 asymmetric stretch chromophore: CO2HF(DF) and CO2HCl(DCl) linear and CO2HBr bent equilibrium geometries" @default.
- W2034687002 cites W1591780445 @default.
- W2034687002 cites W1969010623 @default.
- W2034687002 cites W1975029424 @default.
- W2034687002 cites W1982406319 @default.
- W2034687002 cites W1987439722 @default.
- W2034687002 cites W1991122318 @default.
- W2034687002 cites W1992777359 @default.
- W2034687002 cites W1992924812 @default.
- W2034687002 cites W2001084087 @default.
- W2034687002 cites W2002218208 @default.
- W2034687002 cites W2003013803 @default.
- W2034687002 cites W2008382162 @default.
- W2034687002 cites W2010592259 @default.
- W2034687002 cites W2011105989 @default.
- W2034687002 cites W2013198087 @default.
- W2034687002 cites W2016184685 @default.
- W2034687002 cites W2018015066 @default.
- W2034687002 cites W2019184332 @default.
- W2034687002 cites W2022804805 @default.
- W2034687002 cites W2023368816 @default.
- W2034687002 cites W2023438409 @default.
- W2034687002 cites W2027046934 @default.
- W2034687002 cites W2034192324 @default.
- W2034687002 cites W2034440173 @default.
- W2034687002 cites W2035371465 @default.
- W2034687002 cites W2039478238 @default.
- W2034687002 cites W2042692490 @default.
- W2034687002 cites W2046200043 @default.
- W2034687002 cites W2050374548 @default.
- W2034687002 cites W2051428280 @default.
- W2034687002 cites W2052189460 @default.
- W2034687002 cites W2052457351 @default.
- W2034687002 cites W2052938622 @default.
- W2034687002 cites W2057574214 @default.
- W2034687002 cites W2064303796 @default.
- W2034687002 cites W2068285919 @default.
- W2034687002 cites W2068367428 @default.
- W2034687002 cites W2073719842 @default.
- W2034687002 cites W2074834384 @default.
- W2034687002 cites W2081495132 @default.
- W2034687002 cites W2082127094 @default.
- W2034687002 cites W2091411712 @default.
- W2034687002 cites W2093249600 @default.
- W2034687002 cites W2093496489 @default.
- W2034687002 cites W2095503680 @default.
- W2034687002 cites W2114123798 @default.
- W2034687002 cites W2568902730 @default.
- W2034687002 cites W2950333599 @default.
- W2034687002 doi "https://doi.org/10.1063/1.458077" @default.
- W2034687002 hasPublicationYear "1990" @default.
- W2034687002 type Work @default.
- W2034687002 sameAs 2034687002 @default.
- W2034687002 citedByCount "74" @default.
- W2034687002 countsByYear W20346870022013 @default.
- W2034687002 countsByYear W20346870022014 @default.
- W2034687002 crossrefType "journal-article" @default.
- W2034687002 hasAuthorship W2034687002A5007619612 @default.
- W2034687002 hasAuthorship W2034687002A5019467914 @default.
- W2034687002 hasAuthorship W2034687002A5048399204 @default.
- W2034687002 hasAuthorship W2034687002A5061896781 @default.
- W2034687002 hasConcept C113196181 @default.
- W2034687002 hasConcept C119824511 @default.
- W2034687002 hasConcept C120665830 @default.
- W2034687002 hasConcept C121332964 @default.
- W2034687002 hasConcept C125287762 @default.
- W2034687002 hasConcept C1276947 @default.
- W2034687002 hasConcept C153642686 @default.
- W2034687002 hasConcept C158355884 @default.
- W2034687002 hasConcept C159985019 @default.
- W2034687002 hasConcept C166950319 @default.
- W2034687002 hasConcept C178790620 @default.
- W2034687002 hasConcept C181500209 @default.
- W2034687002 hasConcept C184779094 @default.
- W2034687002 hasConcept C185592680 @default.
- W2034687002 hasConcept C192468462 @default.
- W2034687002 hasConcept C192562407 @default.
- W2034687002 hasConcept C32891209 @default.
- W2034687002 hasConcept C32909587 @default.
- W2034687002 hasConcept C41999313 @default.
- W2034687002 hasConcept C43617362 @default.
- W2034687002 hasConcept C4839761 @default.
- W2034687002 hasConcept C62520636 @default.
- W2034687002 hasConcept C69523127 @default.
- W2034687002 hasConcept C75473681 @default.
- W2034687002 hasConceptScore W2034687002C113196181 @default.
- W2034687002 hasConceptScore W2034687002C119824511 @default.
- W2034687002 hasConceptScore W2034687002C120665830 @default.
- W2034687002 hasConceptScore W2034687002C121332964 @default.
- W2034687002 hasConceptScore W2034687002C125287762 @default.