Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034690693> ?p ?o ?g. }
- W2034690693 endingPage "190" @default.
- W2034690693 startingPage "176" @default.
- W2034690693 abstract "Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details." @default.
- W2034690693 created "2016-06-24" @default.
- W2034690693 creator A5001916277 @default.
- W2034690693 creator A5004959719 @default.
- W2034690693 creator A5045067652 @default.
- W2034690693 creator A5062395162 @default.
- W2034690693 creator A5084950082 @default.
- W2034690693 date "2013-06-01" @default.
- W2034690693 modified "2023-10-11" @default.
- W2034690693 title "Linear mixed-effects modeling approach to FMRI group analysis" @default.
- W2034690693 cites W1969194774 @default.
- W2034690693 cites W1974443530 @default.
- W2034690693 cites W1975938737 @default.
- W2034690693 cites W1981747359 @default.
- W2034690693 cites W1996843362 @default.
- W2034690693 cites W1999503697 @default.
- W2034690693 cites W2011430633 @default.
- W2034690693 cites W2013024694 @default.
- W2034690693 cites W2018102971 @default.
- W2034690693 cites W2019262124 @default.
- W2034690693 cites W2027289999 @default.
- W2034690693 cites W2029386843 @default.
- W2034690693 cites W2029671471 @default.
- W2034690693 cites W2044783758 @default.
- W2034690693 cites W2063520133 @default.
- W2034690693 cites W2082906925 @default.
- W2034690693 cites W2100879297 @default.
- W2034690693 cites W2103907386 @default.
- W2034690693 cites W2106392979 @default.
- W2034690693 cites W2111233032 @default.
- W2034690693 cites W2117140276 @default.
- W2034690693 cites W2120938928 @default.
- W2034690693 cites W2125118056 @default.
- W2034690693 cites W2134036574 @default.
- W2034690693 cites W2139376466 @default.
- W2034690693 cites W2141034208 @default.
- W2034690693 cites W2141403362 @default.
- W2034690693 cites W2142864721 @default.
- W2034690693 cites W2151811639 @default.
- W2034690693 cites W2413573154 @default.
- W2034690693 cites W2500756573 @default.
- W2034690693 doi "https://doi.org/10.1016/j.neuroimage.2013.01.047" @default.
- W2034690693 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3638840" @default.
- W2034690693 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23376789" @default.
- W2034690693 hasPublicationYear "2013" @default.
- W2034690693 type Work @default.
- W2034690693 sameAs 2034690693 @default.
- W2034690693 citedByCount "351" @default.
- W2034690693 countsByYear W20346906932013 @default.
- W2034690693 countsByYear W20346906932014 @default.
- W2034690693 countsByYear W20346906932015 @default.
- W2034690693 countsByYear W20346906932016 @default.
- W2034690693 countsByYear W20346906932017 @default.
- W2034690693 countsByYear W20346906932018 @default.
- W2034690693 countsByYear W20346906932019 @default.
- W2034690693 countsByYear W20346906932020 @default.
- W2034690693 countsByYear W20346906932021 @default.
- W2034690693 countsByYear W20346906932022 @default.
- W2034690693 countsByYear W20346906932023 @default.
- W2034690693 crossrefType "journal-article" @default.
- W2034690693 hasAuthorship W2034690693A5001916277 @default.
- W2034690693 hasAuthorship W2034690693A5004959719 @default.
- W2034690693 hasAuthorship W2034690693A5045067652 @default.
- W2034690693 hasAuthorship W2034690693A5062395162 @default.
- W2034690693 hasAuthorship W2034690693A5084950082 @default.
- W2034690693 hasBestOaLocation W20346906932 @default.
- W2034690693 hasConcept C104709138 @default.
- W2034690693 hasConcept C105795698 @default.
- W2034690693 hasConcept C119043178 @default.
- W2034690693 hasConcept C119340705 @default.
- W2034690693 hasConcept C121955636 @default.
- W2034690693 hasConcept C126322002 @default.
- W2034690693 hasConcept C144133560 @default.
- W2034690693 hasConcept C149782125 @default.
- W2034690693 hasConcept C153720581 @default.
- W2034690693 hasConcept C16012445 @default.
- W2034690693 hasConcept C163175372 @default.
- W2034690693 hasConcept C168743327 @default.
- W2034690693 hasConcept C171606756 @default.
- W2034690693 hasConcept C178650346 @default.
- W2034690693 hasConcept C185142706 @default.
- W2034690693 hasConcept C188321436 @default.
- W2034690693 hasConcept C196083921 @default.
- W2034690693 hasConcept C203233044 @default.
- W2034690693 hasConcept C2780598303 @default.
- W2034690693 hasConcept C33923547 @default.
- W2034690693 hasConcept C41008148 @default.
- W2034690693 hasConcept C48921125 @default.
- W2034690693 hasConcept C71924100 @default.
- W2034690693 hasConcept C9357733 @default.
- W2034690693 hasConcept C95190672 @default.
- W2034690693 hasConceptScore W2034690693C104709138 @default.
- W2034690693 hasConceptScore W2034690693C105795698 @default.
- W2034690693 hasConceptScore W2034690693C119043178 @default.
- W2034690693 hasConceptScore W2034690693C119340705 @default.
- W2034690693 hasConceptScore W2034690693C121955636 @default.
- W2034690693 hasConceptScore W2034690693C126322002 @default.
- W2034690693 hasConceptScore W2034690693C144133560 @default.