Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034706685> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2034706685 abstract "Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 23 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry." @default.
- W2034706685 created "2016-06-24" @default.
- W2034706685 creator A5073833511 @default.
- W2034706685 creator A5076516191 @default.
- W2034706685 date "2007-01-05" @default.
- W2034706685 modified "2023-10-16" @default.
- W2034706685 title "Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics" @default.
- W2034706685 cites W1516380102 @default.
- W2034706685 cites W1659688442 @default.
- W2034706685 cites W1988658666 @default.
- W2034706685 cites W1997554080 @default.
- W2034706685 cites W2006755239 @default.
- W2034706685 cites W2009367050 @default.
- W2034706685 cites W2020630812 @default.
- W2034706685 cites W2024036701 @default.
- W2034706685 cites W2033575143 @default.
- W2034706685 cites W2035668677 @default.
- W2034706685 cites W2038052132 @default.
- W2034706685 cites W2044131425 @default.
- W2034706685 cites W2056760934 @default.
- W2034706685 cites W2057880772 @default.
- W2034706685 cites W2060634434 @default.
- W2034706685 cites W2069373108 @default.
- W2034706685 cites W2084041890 @default.
- W2034706685 cites W2085761972 @default.
- W2034706685 cites W2086372675 @default.
- W2034706685 cites W2092761280 @default.
- W2034706685 cites W2100009442 @default.
- W2034706685 cites W2156990087 @default.
- W2034706685 cites W2328093216 @default.
- W2034706685 cites W3023313824 @default.
- W2034706685 cites W3102873685 @default.
- W2034706685 doi "https://doi.org/10.1103/physreve.75.011402" @default.
- W2034706685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17358145" @default.
- W2034706685 hasPublicationYear "2007" @default.
- W2034706685 type Work @default.
- W2034706685 sameAs 2034706685 @default.
- W2034706685 citedByCount "21" @default.
- W2034706685 countsByYear W20347066852012 @default.
- W2034706685 countsByYear W20347066852013 @default.
- W2034706685 countsByYear W20347066852015 @default.
- W2034706685 crossrefType "journal-article" @default.
- W2034706685 hasAuthorship W2034706685A5073833511 @default.
- W2034706685 hasAuthorship W2034706685A5076516191 @default.
- W2034706685 hasConcept C120665830 @default.
- W2034706685 hasConcept C121332964 @default.
- W2034706685 hasConcept C121864883 @default.
- W2034706685 hasConcept C147789679 @default.
- W2034706685 hasConcept C151730666 @default.
- W2034706685 hasConcept C159467904 @default.
- W2034706685 hasConcept C178790620 @default.
- W2034706685 hasConcept C185592680 @default.
- W2034706685 hasConcept C2779343474 @default.
- W2034706685 hasConcept C2780471494 @default.
- W2034706685 hasConcept C38976095 @default.
- W2034706685 hasConcept C47422493 @default.
- W2034706685 hasConcept C59789625 @default.
- W2034706685 hasConcept C62520636 @default.
- W2034706685 hasConcept C74650414 @default.
- W2034706685 hasConcept C86803240 @default.
- W2034706685 hasConceptScore W2034706685C120665830 @default.
- W2034706685 hasConceptScore W2034706685C121332964 @default.
- W2034706685 hasConceptScore W2034706685C121864883 @default.
- W2034706685 hasConceptScore W2034706685C147789679 @default.
- W2034706685 hasConceptScore W2034706685C151730666 @default.
- W2034706685 hasConceptScore W2034706685C159467904 @default.
- W2034706685 hasConceptScore W2034706685C178790620 @default.
- W2034706685 hasConceptScore W2034706685C185592680 @default.
- W2034706685 hasConceptScore W2034706685C2779343474 @default.
- W2034706685 hasConceptScore W2034706685C2780471494 @default.
- W2034706685 hasConceptScore W2034706685C38976095 @default.
- W2034706685 hasConceptScore W2034706685C47422493 @default.
- W2034706685 hasConceptScore W2034706685C59789625 @default.
- W2034706685 hasConceptScore W2034706685C62520636 @default.
- W2034706685 hasConceptScore W2034706685C74650414 @default.
- W2034706685 hasConceptScore W2034706685C86803240 @default.
- W2034706685 hasIssue "1" @default.
- W2034706685 hasLocation W20347066851 @default.
- W2034706685 hasLocation W20347066852 @default.
- W2034706685 hasOpenAccess W2034706685 @default.
- W2034706685 hasPrimaryLocation W20347066851 @default.
- W2034706685 hasRelatedWork W1965573866 @default.
- W2034706685 hasRelatedWork W1966766352 @default.
- W2034706685 hasRelatedWork W2024142892 @default.
- W2034706685 hasRelatedWork W2030889477 @default.
- W2034706685 hasRelatedWork W2059653716 @default.
- W2034706685 hasRelatedWork W2279699659 @default.
- W2034706685 hasRelatedWork W2297833003 @default.
- W2034706685 hasRelatedWork W2378444375 @default.
- W2034706685 hasRelatedWork W3104579130 @default.
- W2034706685 hasRelatedWork W3124469664 @default.
- W2034706685 hasVolume "75" @default.
- W2034706685 isParatext "false" @default.
- W2034706685 isRetracted "false" @default.
- W2034706685 magId "2034706685" @default.
- W2034706685 workType "article" @default.