Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034709171> ?p ?o ?g. }
- W2034709171 endingPage "114" @default.
- W2034709171 startingPage "108" @default.
- W2034709171 abstract "Leaf nitrogen content (LNC) is an important indicator of tobacco quality and is used in the prediction of tobacco yield. Reflectance experiments for flue-cured tobacco were conducted over 2 consecutive years. Leaf hyperspectral reflectance and nitrogen content data were collected at 15-day intervals from 30 days after transplant until harvest. In this work, we identified the central band that sensitive to tobacco LNC and the optimum combination to establish new spectral indices (SR and NDVI), which were used in linear models of the specific ratio vegetation index (SR), normalized difference vegetation index (NDVI), stepwise multiple linear regression (SMLR), and back-propagation (BP) neural network models as independent variable or input factors. The central bands for the LNC were concentrated in the visible range (450–750 nm) in combination with the shortwave infrared range (1450–2500 nm) range. The optimum band combinations for SR and NDVI were (590 and 1980 nm) and (1970 and 650 nm), respectively. The BP neural network model was the most stable and accurate model (R2 = 0.91, RMSE = 0.09, and K¯=0.00). The SR, NDVI, and SMLR models had R2 values of 0.77, 0.76, and 0.86; RMSE values of 0.26, 0.51, and 0.60, and K¯ values of 0.05, 0.11, and 0.14, respectively. The results indicate the possibility of monitoring LNC by combining remote sensing with predictive models." @default.
- W2034709171 created "2016-06-24" @default.
- W2034709171 creator A5013336122 @default.
- W2034709171 creator A5051765477 @default.
- W2034709171 creator A5063875515 @default.
- W2034709171 creator A5065852535 @default.
- W2034709171 creator A5072012660 @default.
- W2034709171 creator A5089188165 @default.
- W2034709171 date "2013-08-01" @default.
- W2034709171 modified "2023-10-16" @default.
- W2034709171 title "Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance" @default.
- W2034709171 cites W1906130215 @default.
- W2034709171 cites W1972557367 @default.
- W2034709171 cites W1978788419 @default.
- W2034709171 cites W1983284664 @default.
- W2034709171 cites W1986066797 @default.
- W2034709171 cites W1988233512 @default.
- W2034709171 cites W1988269748 @default.
- W2034709171 cites W1991528201 @default.
- W2034709171 cites W1992925847 @default.
- W2034709171 cites W1995376331 @default.
- W2034709171 cites W2017903276 @default.
- W2034709171 cites W2019305916 @default.
- W2034709171 cites W2022627699 @default.
- W2034709171 cites W2031050264 @default.
- W2034709171 cites W2043040083 @default.
- W2034709171 cites W2046404820 @default.
- W2034709171 cites W2046612965 @default.
- W2034709171 cites W2048658824 @default.
- W2034709171 cites W2051011878 @default.
- W2034709171 cites W2059168882 @default.
- W2034709171 cites W2059679174 @default.
- W2034709171 cites W2062567499 @default.
- W2034709171 cites W2064920866 @default.
- W2034709171 cites W2070047344 @default.
- W2034709171 cites W2081707742 @default.
- W2034709171 cites W2081734510 @default.
- W2034709171 cites W2083756613 @default.
- W2034709171 cites W2084602460 @default.
- W2034709171 cites W2085624281 @default.
- W2034709171 cites W2089464686 @default.
- W2034709171 cites W2092626667 @default.
- W2034709171 cites W2098188176 @default.
- W2034709171 cites W2107919956 @default.
- W2034709171 cites W2111947859 @default.
- W2034709171 cites W2118703810 @default.
- W2034709171 cites W2128438912 @default.
- W2034709171 cites W2163410149 @default.
- W2034709171 cites W2166660987 @default.
- W2034709171 cites W2167556755 @default.
- W2034709171 cites W2328369818 @default.
- W2034709171 cites W2472166193 @default.
- W2034709171 cites W2505361739 @default.
- W2034709171 cites W4236621906 @default.
- W2034709171 cites W9910819 @default.
- W2034709171 doi "https://doi.org/10.1016/j.fcr.2013.06.009" @default.
- W2034709171 hasPublicationYear "2013" @default.
- W2034709171 type Work @default.
- W2034709171 sameAs 2034709171 @default.
- W2034709171 citedByCount "23" @default.
- W2034709171 countsByYear W20347091712014 @default.
- W2034709171 countsByYear W20347091712016 @default.
- W2034709171 countsByYear W20347091712017 @default.
- W2034709171 countsByYear W20347091712018 @default.
- W2034709171 countsByYear W20347091712019 @default.
- W2034709171 countsByYear W20347091712020 @default.
- W2034709171 countsByYear W20347091712021 @default.
- W2034709171 countsByYear W20347091712022 @default.
- W2034709171 countsByYear W20347091712023 @default.
- W2034709171 crossrefType "journal-article" @default.
- W2034709171 hasAuthorship W2034709171A5013336122 @default.
- W2034709171 hasAuthorship W2034709171A5051765477 @default.
- W2034709171 hasAuthorship W2034709171A5063875515 @default.
- W2034709171 hasAuthorship W2034709171A5065852535 @default.
- W2034709171 hasAuthorship W2034709171A5072012660 @default.
- W2034709171 hasAuthorship W2034709171A5089188165 @default.
- W2034709171 hasConcept C101000010 @default.
- W2034709171 hasConcept C105795698 @default.
- W2034709171 hasConcept C108597893 @default.
- W2034709171 hasConcept C120665830 @default.
- W2034709171 hasConcept C121332964 @default.
- W2034709171 hasConcept C122519844 @default.
- W2034709171 hasConcept C139945424 @default.
- W2034709171 hasConcept C142724271 @default.
- W2034709171 hasConcept C152877465 @default.
- W2034709171 hasConcept C1549246 @default.
- W2034709171 hasConcept C159078339 @default.
- W2034709171 hasConcept C178790620 @default.
- W2034709171 hasConcept C185592680 @default.
- W2034709171 hasConcept C205649164 @default.
- W2034709171 hasConcept C25989453 @default.
- W2034709171 hasConcept C2776133958 @default.
- W2034709171 hasConcept C2780376076 @default.
- W2034709171 hasConcept C33923547 @default.
- W2034709171 hasConcept C39432304 @default.
- W2034709171 hasConcept C48921125 @default.
- W2034709171 hasConcept C537208039 @default.
- W2034709171 hasConcept C59822182 @default.