Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034711256> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2034711256 endingPage "340" @default.
- W2034711256 startingPage "317" @default.
- W2034711256 abstract "The duality theory of geometric programming as developed by Duflin, Peterson and Zener [7] is based on abstract properties shared by certain classical inequalities, such as Cauchy’s arithmetic-geometric mean inequality and Hölder’s inequality. Inequalities with these abstract properties have been termed “geometric inequalities” [7, p. 195]. In this sequence of papers [15], [16], [17] a new geometric inequality is established and used to extend the “refined duality theory” for “posynomial” geometric programs [6] and [7, Chap. VI]. This extended duality theory treats both “quadratically-constrained quadratic programs” and “$l_p $-constrained $l_p $-approximation (regression) problems” through a rather novel and unified formulation of these two classes of programs. This work generalizes some of the work of others on (linearly-constrained) quadratic programs and provides a new explicit formulation of duality for constrained approximation problems. Duality theories have been developed for a large class of programs, namely all convex programs, but those theories (when applied to the programs considered here) are not nearly as strong as the theory developed here. This theory has virtually all of the desirable features [7, p. 11] of its analogue for posynomial programs, and its proof provides useful computational procedures." @default.
- W2034711256 created "2016-06-24" @default.
- W2034711256 creator A5058371792 @default.
- W2034711256 creator A5085531975 @default.
- W2034711256 date "1969-03-01" @default.
- W2034711256 modified "2023-10-01" @default.
- W2034711256 title "Geometric Programming: Duality in Quadratic Programming and $l_p $-Approximation II (Canonical Programs)" @default.
- W2034711256 cites W2000314332 @default.
- W2034711256 cites W2037535666 @default.
- W2034711256 cites W2042825511 @default.
- W2034711256 cites W2068677961 @default.
- W2034711256 cites W2070499730 @default.
- W2034711256 cites W2123457441 @default.
- W2034711256 cites W2209612001 @default.
- W2034711256 cites W2561178549 @default.
- W2034711256 cites W2565484686 @default.
- W2034711256 cites W290360019 @default.
- W2034711256 cites W3136721680 @default.
- W2034711256 doi "https://doi.org/10.1137/0117031" @default.
- W2034711256 hasPublicationYear "1969" @default.
- W2034711256 type Work @default.
- W2034711256 sameAs 2034711256 @default.
- W2034711256 citedByCount "24" @default.
- W2034711256 crossrefType "journal-article" @default.
- W2034711256 hasAuthorship W2034711256A5058371792 @default.
- W2034711256 hasAuthorship W2034711256A5085531975 @default.
- W2034711256 hasConcept C126255220 @default.
- W2034711256 hasConcept C129844170 @default.
- W2034711256 hasConcept C134306372 @default.
- W2034711256 hasConcept C136119220 @default.
- W2034711256 hasConcept C137836250 @default.
- W2034711256 hasConcept C163863214 @default.
- W2034711256 hasConcept C195956108 @default.
- W2034711256 hasConcept C202444582 @default.
- W2034711256 hasConcept C20729856 @default.
- W2034711256 hasConcept C2524010 @default.
- W2034711256 hasConcept C2778023678 @default.
- W2034711256 hasConcept C28826006 @default.
- W2034711256 hasConcept C33923547 @default.
- W2034711256 hasConcept C49344536 @default.
- W2034711256 hasConcept C5274546 @default.
- W2034711256 hasConcept C81845259 @default.
- W2034711256 hasConceptScore W2034711256C126255220 @default.
- W2034711256 hasConceptScore W2034711256C129844170 @default.
- W2034711256 hasConceptScore W2034711256C134306372 @default.
- W2034711256 hasConceptScore W2034711256C136119220 @default.
- W2034711256 hasConceptScore W2034711256C137836250 @default.
- W2034711256 hasConceptScore W2034711256C163863214 @default.
- W2034711256 hasConceptScore W2034711256C195956108 @default.
- W2034711256 hasConceptScore W2034711256C202444582 @default.
- W2034711256 hasConceptScore W2034711256C20729856 @default.
- W2034711256 hasConceptScore W2034711256C2524010 @default.
- W2034711256 hasConceptScore W2034711256C2778023678 @default.
- W2034711256 hasConceptScore W2034711256C28826006 @default.
- W2034711256 hasConceptScore W2034711256C33923547 @default.
- W2034711256 hasConceptScore W2034711256C49344536 @default.
- W2034711256 hasConceptScore W2034711256C5274546 @default.
- W2034711256 hasConceptScore W2034711256C81845259 @default.
- W2034711256 hasIssue "2" @default.
- W2034711256 hasLocation W20347112561 @default.
- W2034711256 hasOpenAccess W2034711256 @default.
- W2034711256 hasPrimaryLocation W20347112561 @default.
- W2034711256 hasRelatedWork W1497177761 @default.
- W2034711256 hasRelatedWork W2026391120 @default.
- W2034711256 hasRelatedWork W2034711256 @default.
- W2034711256 hasRelatedWork W2070240105 @default.
- W2034711256 hasRelatedWork W2070499730 @default.
- W2034711256 hasRelatedWork W2108927308 @default.
- W2034711256 hasRelatedWork W2889187351 @default.
- W2034711256 hasRelatedWork W3213681592 @default.
- W2034711256 hasRelatedWork W4226451380 @default.
- W2034711256 hasRelatedWork W4306789213 @default.
- W2034711256 hasVolume "17" @default.
- W2034711256 isParatext "false" @default.
- W2034711256 isRetracted "false" @default.
- W2034711256 magId "2034711256" @default.
- W2034711256 workType "article" @default.