Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034726418> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2034726418 abstract "Similarity matrices generated from many applications may not be positive semidefinite, and hence can't fit into the kernel machine framework. In this paper, we study the problem of training support vector machines with an indefinite kernel. We consider a regularized SVM formulation, in which the indefinite kernel matrix is treated as a noisy observation of some unknown positive semidefinite one (proxy kernel) and the support vectors and the proxy kernel can be computed simultaneously. We propose a semi-infinite quadratically constrained linear program formulation for the optimization, which can be solved iteratively to find a global optimum solution. We further propose to employ an additional pruning strategy, which significantly improves the efficiency of the algorithm, while retaining the convergence property of the algorithm. In addition, we show the close relationship between the proposed formulation and multiple kernel learning. Experiments on a collection of benchmark data sets demonstrate the efficiency and effectiveness of the proposed algorithm." @default.
- W2034726418 created "2016-06-24" @default.
- W2034726418 creator A5010419481 @default.
- W2034726418 creator A5081340408 @default.
- W2034726418 date "2008-01-01" @default.
- W2034726418 modified "2023-09-26" @default.
- W2034726418 title "Training SVM with indefinite kernels" @default.
- W2034726418 cites W1511160855 @default.
- W2034726418 cites W1553702074 @default.
- W2034726418 cites W1560724230 @default.
- W2034726418 cites W1563088657 @default.
- W2034726418 cites W2005688170 @default.
- W2034726418 cites W2015855658 @default.
- W2034726418 cites W2075887074 @default.
- W2034726418 cites W2084812512 @default.
- W2034726418 cites W2100659887 @default.
- W2034726418 cites W2108482774 @default.
- W2034726418 cites W2118216287 @default.
- W2034726418 cites W2123818990 @default.
- W2034726418 cites W2129971280 @default.
- W2034726418 cites W2130910507 @default.
- W2034726418 cites W2138079527 @default.
- W2034726418 cites W2139999468 @default.
- W2034726418 cites W2145295623 @default.
- W2034726418 cites W2148894497 @default.
- W2034726418 cites W2150772522 @default.
- W2034726418 cites W2154462399 @default.
- W2034726418 cites W2156909104 @default.
- W2034726418 cites W2157656721 @default.
- W2034726418 cites W2296319761 @default.
- W2034726418 cites W2798909945 @default.
- W2034726418 cites W91932901 @default.
- W2034726418 doi "https://doi.org/10.1145/1390156.1390174" @default.
- W2034726418 hasPublicationYear "2008" @default.
- W2034726418 type Work @default.
- W2034726418 sameAs 2034726418 @default.
- W2034726418 citedByCount "51" @default.
- W2034726418 countsByYear W20347264182012 @default.
- W2034726418 countsByYear W20347264182013 @default.
- W2034726418 countsByYear W20347264182014 @default.
- W2034726418 countsByYear W20347264182015 @default.
- W2034726418 countsByYear W20347264182016 @default.
- W2034726418 countsByYear W20347264182018 @default.
- W2034726418 countsByYear W20347264182019 @default.
- W2034726418 countsByYear W20347264182020 @default.
- W2034726418 countsByYear W20347264182021 @default.
- W2034726418 countsByYear W20347264182023 @default.
- W2034726418 crossrefType "proceedings-article" @default.
- W2034726418 hasAuthorship W2034726418A5010419481 @default.
- W2034726418 hasAuthorship W2034726418A5081340408 @default.
- W2034726418 hasConcept C11413529 @default.
- W2034726418 hasConcept C118615104 @default.
- W2034726418 hasConcept C121332964 @default.
- W2034726418 hasConcept C122280245 @default.
- W2034726418 hasConcept C12267149 @default.
- W2034726418 hasConcept C126255220 @default.
- W2034726418 hasConcept C13280743 @default.
- W2034726418 hasConcept C154945302 @default.
- W2034726418 hasConcept C158693339 @default.
- W2034726418 hasConcept C185798385 @default.
- W2034726418 hasConcept C205649164 @default.
- W2034726418 hasConcept C33923547 @default.
- W2034726418 hasConcept C41008148 @default.
- W2034726418 hasConcept C49712288 @default.
- W2034726418 hasConcept C62520636 @default.
- W2034726418 hasConcept C74193536 @default.
- W2034726418 hasConceptScore W2034726418C11413529 @default.
- W2034726418 hasConceptScore W2034726418C118615104 @default.
- W2034726418 hasConceptScore W2034726418C121332964 @default.
- W2034726418 hasConceptScore W2034726418C122280245 @default.
- W2034726418 hasConceptScore W2034726418C12267149 @default.
- W2034726418 hasConceptScore W2034726418C126255220 @default.
- W2034726418 hasConceptScore W2034726418C13280743 @default.
- W2034726418 hasConceptScore W2034726418C154945302 @default.
- W2034726418 hasConceptScore W2034726418C158693339 @default.
- W2034726418 hasConceptScore W2034726418C185798385 @default.
- W2034726418 hasConceptScore W2034726418C205649164 @default.
- W2034726418 hasConceptScore W2034726418C33923547 @default.
- W2034726418 hasConceptScore W2034726418C41008148 @default.
- W2034726418 hasConceptScore W2034726418C49712288 @default.
- W2034726418 hasConceptScore W2034726418C62520636 @default.
- W2034726418 hasConceptScore W2034726418C74193536 @default.
- W2034726418 hasLocation W20347264181 @default.
- W2034726418 hasOpenAccess W2034726418 @default.
- W2034726418 hasPrimaryLocation W20347264181 @default.
- W2034726418 hasRelatedWork W1987859285 @default.
- W2034726418 hasRelatedWork W2101819884 @default.
- W2034726418 hasRelatedWork W2539163683 @default.
- W2034726418 hasRelatedWork W2779764073 @default.
- W2034726418 hasRelatedWork W2803710604 @default.
- W2034726418 hasRelatedWork W2982170967 @default.
- W2034726418 hasRelatedWork W3136979370 @default.
- W2034726418 hasRelatedWork W3194539120 @default.
- W2034726418 hasRelatedWork W3195168932 @default.
- W2034726418 hasRelatedWork W4205958290 @default.
- W2034726418 isParatext "false" @default.
- W2034726418 isRetracted "false" @default.
- W2034726418 magId "2034726418" @default.
- W2034726418 workType "article" @default.