Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034734595> ?p ?o ?g. }
- W2034734595 endingPage "59" @default.
- W2034734595 startingPage "47" @default.
- W2034734595 abstract "In this study, poly ethyleneimine (PEI)/Titania (TiO2) multilayer film on quartz tubes have been successfully fabricated via a layer-by-layer (LbL) self-assembly method. Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis were carried out for characterization of the layers on quartz tube. The SEM pictures showed that the film surface is smooth and uniform. The BET characterization verified the formation of multilayer thin film. The photocatalytic activity of the PEI/TiO2 multilayer deposited on the quartz tubes was evaluated in the treatment of raw petroleum refinery wastewater (PRW) under UV light irradiation in three annular photocatalytic reactors. This study examined the impact of initial chemical oxygen demand (COD) concentration, H2O2 concentration, pH and reaction time on the PRW treatment and the results were used to generate both a response surface methodology (RSM) model and an artificial neural network (ANN) model. Maximum COD removal (98 %) was achieved at the optimum conditions (initial COD concentration of 300 mg/l, hydrogen peroxide concentration of 8.8 mM, pH of 5 and reaction time of 120 min). A comparison between the model results and experimental data gave a high correlation coefficient (R ANN 2 = 0.9632, R RSM 2 = 0.943) and showed that two models were able to predict COD removal from PRW by PEI/TiO2/UV process. However, ANN model was superior to RSM model with higher value of coefficient of determination (0.9632ANN > 0.94RSM) and the lower root mean square error (RMSE) (3.377AAN < 3.569RSM). The average percentage error for ANN and RSM models was 0.18 and 0.73, respectively, indicating the superiority of ANN in capturing the nonlinear behavior of the system. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis." @default.
- W2034734595 created "2016-06-24" @default.
- W2034734595 creator A5002644771 @default.
- W2034734595 creator A5042000087 @default.
- W2034734595 creator A5052607602 @default.
- W2034734595 creator A5078762082 @default.
- W2034734595 creator A5079724400 @default.
- W2034734595 creator A5085289352 @default.
- W2034734595 date "2014-08-15" @default.
- W2034734595 modified "2023-10-01" @default.
- W2034734595 title "Process modeling and evaluation of petroleum refinery wastewater treatment through response surface methodology and artificial neural network in a photocatalytic reactor using poly ethyleneimine (PEI)/titania (TiO2) multilayer film on quartz tube" @default.
- W2034734595 cites W1973544618 @default.
- W2034734595 cites W1975708850 @default.
- W2034734595 cites W1988750272 @default.
- W2034734595 cites W1990271447 @default.
- W2034734595 cites W1990983194 @default.
- W2034734595 cites W1994069602 @default.
- W2034734595 cites W1995538681 @default.
- W2034734595 cites W1998387807 @default.
- W2034734595 cites W2001142665 @default.
- W2034734595 cites W2003853496 @default.
- W2034734595 cites W2007098761 @default.
- W2034734595 cites W2009491126 @default.
- W2034734595 cites W2015856071 @default.
- W2034734595 cites W2018521575 @default.
- W2034734595 cites W2023292778 @default.
- W2034734595 cites W2036069611 @default.
- W2034734595 cites W2037302321 @default.
- W2034734595 cites W2040859461 @default.
- W2034734595 cites W2041794483 @default.
- W2034734595 cites W2043844827 @default.
- W2034734595 cites W2044081397 @default.
- W2034734595 cites W2044914237 @default.
- W2034734595 cites W2049693908 @default.
- W2034734595 cites W2050426625 @default.
- W2034734595 cites W2061676109 @default.
- W2034734595 cites W2062486174 @default.
- W2034734595 cites W2063086236 @default.
- W2034734595 cites W2075524109 @default.
- W2034734595 cites W2083938306 @default.
- W2034734595 cites W2090220299 @default.
- W2034734595 cites W2095365996 @default.
- W2034734595 cites W2107939074 @default.
- W2034734595 cites W2122782494 @default.
- W2034734595 cites W2143546017 @default.
- W2034734595 cites W2145756402 @default.
- W2034734595 cites W2949643603 @default.
- W2034734595 cites W4255751560 @default.
- W2034734595 doi "https://doi.org/10.1007/s13203-014-0077-7" @default.
- W2034734595 hasPublicationYear "2014" @default.
- W2034734595 type Work @default.
- W2034734595 sameAs 2034734595 @default.
- W2034734595 citedByCount "30" @default.
- W2034734595 countsByYear W20347345952015 @default.
- W2034734595 countsByYear W20347345952016 @default.
- W2034734595 countsByYear W20347345952017 @default.
- W2034734595 countsByYear W20347345952018 @default.
- W2034734595 countsByYear W20347345952019 @default.
- W2034734595 countsByYear W20347345952020 @default.
- W2034734595 countsByYear W20347345952021 @default.
- W2034734595 countsByYear W20347345952022 @default.
- W2034734595 countsByYear W20347345952023 @default.
- W2034734595 crossrefType "journal-article" @default.
- W2034734595 hasAuthorship W2034734595A5002644771 @default.
- W2034734595 hasAuthorship W2034734595A5042000087 @default.
- W2034734595 hasAuthorship W2034734595A5052607602 @default.
- W2034734595 hasAuthorship W2034734595A5078762082 @default.
- W2034734595 hasAuthorship W2034734595A5079724400 @default.
- W2034734595 hasAuthorship W2034734595A5085289352 @default.
- W2034734595 hasBestOaLocation W20347345951 @default.
- W2034734595 hasConcept C127413603 @default.
- W2034734595 hasConcept C13965031 @default.
- W2034734595 hasConcept C150077022 @default.
- W2034734595 hasConcept C159985019 @default.
- W2034734595 hasConcept C161790260 @default.
- W2034734595 hasConcept C178790620 @default.
- W2034734595 hasConcept C185592680 @default.
- W2034734595 hasConcept C192562407 @default.
- W2034734595 hasConcept C26771246 @default.
- W2034734595 hasConcept C2779870107 @default.
- W2034734595 hasConcept C27923307 @default.
- W2034734595 hasConcept C42360764 @default.
- W2034734595 hasConcept C43617362 @default.
- W2034734595 hasConcept C65165184 @default.
- W2034734595 hasConcept C87717796 @default.
- W2034734595 hasConcept C94061648 @default.
- W2034734595 hasConceptScore W2034734595C127413603 @default.
- W2034734595 hasConceptScore W2034734595C13965031 @default.
- W2034734595 hasConceptScore W2034734595C150077022 @default.
- W2034734595 hasConceptScore W2034734595C159985019 @default.
- W2034734595 hasConceptScore W2034734595C161790260 @default.
- W2034734595 hasConceptScore W2034734595C178790620 @default.
- W2034734595 hasConceptScore W2034734595C185592680 @default.
- W2034734595 hasConceptScore W2034734595C192562407 @default.
- W2034734595 hasConceptScore W2034734595C26771246 @default.
- W2034734595 hasConceptScore W2034734595C2779870107 @default.
- W2034734595 hasConceptScore W2034734595C27923307 @default.
- W2034734595 hasConceptScore W2034734595C42360764 @default.