Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034745144> ?p ?o ?g. }
- W2034745144 endingPage "1765" @default.
- W2034745144 startingPage "1753" @default.
- W2034745144 abstract "A moving-horizon state estimation problem is addressed for a class of nonlinear discrete-time systems with bounded noises acting on the system and measurement equations. As the statistics of such disturbances and of the initial state are assumed to be unknown, we use a generalized least-squares approach that consists in minimizing a quadratic estimation cost function defined on a recent batch of inputs and outputs according to a sliding-window strategy. For the resulting estimator, the existence of bounding sequences on the estimation error is proved. In the absence of noises, exponential convergence to zero is obtained. Moreover, suboptimal solutions are sought for which a certain error is admitted with respect to the optimal cost value. The approximate solution can be determined either on-line by directly minimizing the cost function or off-line by using a nonlinear parameterized function. Simulation results are presented to show the effectiveness of the proposed approach in comparison with the extended Kalman filter." @default.
- W2034745144 created "2016-06-24" @default.
- W2034745144 creator A5012147438 @default.
- W2034745144 creator A5065163167 @default.
- W2034745144 creator A5088425269 @default.
- W2034745144 date "2008-07-01" @default.
- W2034745144 modified "2023-10-10" @default.
- W2034745144 title "Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes" @default.
- W2034745144 cites W1531051295 @default.
- W2034745144 cites W1978956894 @default.
- W2034745144 cites W1983102410 @default.
- W2034745144 cites W1985329511 @default.
- W2034745144 cites W1995104608 @default.
- W2034745144 cites W2037914955 @default.
- W2034745144 cites W2042512542 @default.
- W2034745144 cites W2046275165 @default.
- W2034745144 cites W2085507510 @default.
- W2034745144 cites W2092919449 @default.
- W2034745144 cites W2094704399 @default.
- W2034745144 cites W2098524340 @default.
- W2034745144 cites W2098703861 @default.
- W2034745144 cites W2098816895 @default.
- W2034745144 cites W2101051269 @default.
- W2034745144 cites W2110710005 @default.
- W2034745144 cites W2117992453 @default.
- W2034745144 cites W2127197437 @default.
- W2034745144 cites W2129914124 @default.
- W2034745144 cites W2138280264 @default.
- W2034745144 cites W2141179401 @default.
- W2034745144 cites W2143558629 @default.
- W2034745144 cites W2145317976 @default.
- W2034745144 cites W2150530793 @default.
- W2034745144 cites W2157428011 @default.
- W2034745144 cites W2158207970 @default.
- W2034745144 cites W2161347066 @default.
- W2034745144 cites W2161508344 @default.
- W2034745144 cites W2166116275 @default.
- W2034745144 doi "https://doi.org/10.1016/j.automatica.2007.11.020" @default.
- W2034745144 hasPublicationYear "2008" @default.
- W2034745144 type Work @default.
- W2034745144 sameAs 2034745144 @default.
- W2034745144 citedByCount "235" @default.
- W2034745144 countsByYear W20347451442012 @default.
- W2034745144 countsByYear W20347451442013 @default.
- W2034745144 countsByYear W20347451442014 @default.
- W2034745144 countsByYear W20347451442015 @default.
- W2034745144 countsByYear W20347451442016 @default.
- W2034745144 countsByYear W20347451442017 @default.
- W2034745144 countsByYear W20347451442018 @default.
- W2034745144 countsByYear W20347451442019 @default.
- W2034745144 countsByYear W20347451442020 @default.
- W2034745144 countsByYear W20347451442021 @default.
- W2034745144 countsByYear W20347451442022 @default.
- W2034745144 countsByYear W20347451442023 @default.
- W2034745144 crossrefType "journal-article" @default.
- W2034745144 hasAuthorship W2034745144A5012147438 @default.
- W2034745144 hasAuthorship W2034745144A5065163167 @default.
- W2034745144 hasAuthorship W2034745144A5088425269 @default.
- W2034745144 hasConcept C105795698 @default.
- W2034745144 hasConcept C11413529 @default.
- W2034745144 hasConcept C121332964 @default.
- W2034745144 hasConcept C126255220 @default.
- W2034745144 hasConcept C129844170 @default.
- W2034745144 hasConcept C134306372 @default.
- W2034745144 hasConcept C14036430 @default.
- W2034745144 hasConcept C154945302 @default.
- W2034745144 hasConcept C157286648 @default.
- W2034745144 hasConcept C158622935 @default.
- W2034745144 hasConcept C162324750 @default.
- W2034745144 hasConcept C165464430 @default.
- W2034745144 hasConcept C185429906 @default.
- W2034745144 hasConcept C2524010 @default.
- W2034745144 hasConcept C2775924081 @default.
- W2034745144 hasConcept C2777303404 @default.
- W2034745144 hasConcept C28826006 @default.
- W2034745144 hasConcept C33923547 @default.
- W2034745144 hasConcept C34388435 @default.
- W2034745144 hasConcept C41008148 @default.
- W2034745144 hasConcept C47446073 @default.
- W2034745144 hasConcept C50522688 @default.
- W2034745144 hasConcept C62520636 @default.
- W2034745144 hasConcept C63584917 @default.
- W2034745144 hasConcept C78458016 @default.
- W2034745144 hasConcept C86803240 @default.
- W2034745144 hasConceptScore W2034745144C105795698 @default.
- W2034745144 hasConceptScore W2034745144C11413529 @default.
- W2034745144 hasConceptScore W2034745144C121332964 @default.
- W2034745144 hasConceptScore W2034745144C126255220 @default.
- W2034745144 hasConceptScore W2034745144C129844170 @default.
- W2034745144 hasConceptScore W2034745144C134306372 @default.
- W2034745144 hasConceptScore W2034745144C14036430 @default.
- W2034745144 hasConceptScore W2034745144C154945302 @default.
- W2034745144 hasConceptScore W2034745144C157286648 @default.
- W2034745144 hasConceptScore W2034745144C158622935 @default.
- W2034745144 hasConceptScore W2034745144C162324750 @default.
- W2034745144 hasConceptScore W2034745144C165464430 @default.
- W2034745144 hasConceptScore W2034745144C185429906 @default.
- W2034745144 hasConceptScore W2034745144C2524010 @default.