Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034758081> ?p ?o ?g. }
- W2034758081 endingPage "38" @default.
- W2034758081 startingPage "1" @default.
- W2034758081 abstract "The Probability Density Function (PDF) is the fundamental data model for a variety of stream mining algorithms. Existing works apply the standard nonparametric Kernel Density Estimator (KDE) to approximate the PDF of data streams. As a result, the stream-based KDEs cannot accurately capture complex local density features. In this article, we propose the use of Local Region (LRs) to model local density information in univariate data streams. In-depth theoretical analyses are presented to justify the effectiveness of the LR-based KDE. Based on the analyses, we develop the General Local rEgion AlgorithM (GLEAM) to enhance the estimation quality of structurally complex univariate distributions for existing stream-based KDEs. A set of algorithmic optimizations is designed to improve the query throughput of GLEAM and to achieve its linear order computation. Additionally, a comprehensive suite of experiments was conducted to test the effectiveness and efficiency of GLEAM." @default.
- W2034758081 created "2016-06-24" @default.
- W2034758081 creator A5006756331 @default.
- W2034758081 creator A5033884416 @default.
- W2034758081 creator A5038002204 @default.
- W2034758081 date "2014-08-25" @default.
- W2034758081 modified "2023-09-25" @default.
- W2034758081 title "A Framework for Exploiting Local Information to Enhance Density Estimation of Data Streams" @default.
- W2034758081 cites W1480376833 @default.
- W2034758081 cites W1524270378 @default.
- W2034758081 cites W1981038597 @default.
- W2034758081 cites W1985157189 @default.
- W2034758081 cites W1992023276 @default.
- W2034758081 cites W1995514448 @default.
- W2034758081 cites W1998378660 @default.
- W2034758081 cites W1998783890 @default.
- W2034758081 cites W2001474264 @default.
- W2034758081 cites W2002847183 @default.
- W2034758081 cites W2004945083 @default.
- W2034758081 cites W2017755807 @default.
- W2034758081 cites W2031613530 @default.
- W2034758081 cites W2043277109 @default.
- W2034758081 cites W2044146343 @default.
- W2034758081 cites W2057058417 @default.
- W2034758081 cites W2071679154 @default.
- W2034758081 cites W2089643338 @default.
- W2034758081 cites W2095897464 @default.
- W2034758081 cites W2104827669 @default.
- W2034758081 cites W2108447811 @default.
- W2034758081 cites W2110829452 @default.
- W2034758081 cites W2118020555 @default.
- W2034758081 cites W2128889510 @default.
- W2034758081 cites W2150761236 @default.
- W2034758081 cites W638544165 @default.
- W2034758081 cites W70607902 @default.
- W2034758081 doi "https://doi.org/10.1145/2629618" @default.
- W2034758081 hasPublicationYear "2014" @default.
- W2034758081 type Work @default.
- W2034758081 sameAs 2034758081 @default.
- W2034758081 citedByCount "1" @default.
- W2034758081 countsByYear W20347580812020 @default.
- W2034758081 crossrefType "journal-article" @default.
- W2034758081 hasAuthorship W2034758081A5006756331 @default.
- W2034758081 hasAuthorship W2034758081A5033884416 @default.
- W2034758081 hasAuthorship W2034758081A5038002204 @default.
- W2034758081 hasConcept C102366305 @default.
- W2034758081 hasConcept C105795698 @default.
- W2034758081 hasConcept C11413529 @default.
- W2034758081 hasConcept C114614502 @default.
- W2034758081 hasConcept C119857082 @default.
- W2034758081 hasConcept C122280245 @default.
- W2034758081 hasConcept C12267149 @default.
- W2034758081 hasConcept C124101348 @default.
- W2034758081 hasConcept C161584116 @default.
- W2034758081 hasConcept C166957645 @default.
- W2034758081 hasConcept C185429906 @default.
- W2034758081 hasConcept C189508267 @default.
- W2034758081 hasConcept C195699287 @default.
- W2034758081 hasConcept C197055811 @default.
- W2034758081 hasConcept C199163554 @default.
- W2034758081 hasConcept C2778484313 @default.
- W2034758081 hasConcept C33923547 @default.
- W2034758081 hasConcept C41008148 @default.
- W2034758081 hasConcept C45374587 @default.
- W2034758081 hasConcept C71134354 @default.
- W2034758081 hasConcept C74193536 @default.
- W2034758081 hasConcept C76155785 @default.
- W2034758081 hasConcept C79581498 @default.
- W2034758081 hasConcept C84894716 @default.
- W2034758081 hasConcept C89198739 @default.
- W2034758081 hasConcept C95457728 @default.
- W2034758081 hasConceptScore W2034758081C102366305 @default.
- W2034758081 hasConceptScore W2034758081C105795698 @default.
- W2034758081 hasConceptScore W2034758081C11413529 @default.
- W2034758081 hasConceptScore W2034758081C114614502 @default.
- W2034758081 hasConceptScore W2034758081C119857082 @default.
- W2034758081 hasConceptScore W2034758081C122280245 @default.
- W2034758081 hasConceptScore W2034758081C12267149 @default.
- W2034758081 hasConceptScore W2034758081C124101348 @default.
- W2034758081 hasConceptScore W2034758081C161584116 @default.
- W2034758081 hasConceptScore W2034758081C166957645 @default.
- W2034758081 hasConceptScore W2034758081C185429906 @default.
- W2034758081 hasConceptScore W2034758081C189508267 @default.
- W2034758081 hasConceptScore W2034758081C195699287 @default.
- W2034758081 hasConceptScore W2034758081C197055811 @default.
- W2034758081 hasConceptScore W2034758081C199163554 @default.
- W2034758081 hasConceptScore W2034758081C2778484313 @default.
- W2034758081 hasConceptScore W2034758081C33923547 @default.
- W2034758081 hasConceptScore W2034758081C41008148 @default.
- W2034758081 hasConceptScore W2034758081C45374587 @default.
- W2034758081 hasConceptScore W2034758081C71134354 @default.
- W2034758081 hasConceptScore W2034758081C74193536 @default.
- W2034758081 hasConceptScore W2034758081C76155785 @default.
- W2034758081 hasConceptScore W2034758081C79581498 @default.
- W2034758081 hasConceptScore W2034758081C84894716 @default.
- W2034758081 hasConceptScore W2034758081C89198739 @default.
- W2034758081 hasConceptScore W2034758081C95457728 @default.
- W2034758081 hasIssue "1" @default.