Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034760319> ?p ?o ?g. }
- W2034760319 endingPage "123" @default.
- W2034760319 startingPage "108" @default.
- W2034760319 abstract "Terrestrial Cosmogenic Nuclides (TCNs) have been widely used to date the exposure of alluvial surfaces and to estimate catchment-scale erosion rates. However, TCN concentration differences in samples of different grain sizes remain to be fully understood. In order to explore the possibility that river processes generate such differences, we develop a numerical model to calculate along-stream clast-scale TCN concentrations. Using the hillslope model, there is a progressive detachment of successive clasts of specific sizes followed by their instantaneous fall into the river. In the river, transport velocity and TCN concentration evolution in a clast depend 1) on the probability of being trapped in the sediment mixing layer of the river or within an adjacent terrace; 2) on its size which decreases downstream by attrition. The size-dependent transport law corresponds to the partial transport state in a river. We model the distribution of TCN concentrations in different clast size fractions in the 0–5 cm radius range for catchments in steady-state erosion, and for catchments experiencing sedimentation. We propose that clast attrition tends to increase the variance of TCN concentrations of the small clast size fractions because these fractions incorporate initially big clasts that travelled a long distance in addition to small clasts contributed near the outlet. We obtained numerous clast size–TCN concentration correlations, positive or negative, the significance of which depends on the initial clast size distribution, hillslope erosion rate, river length and lithology. For an equilibrium catchment, even large, we found that the addition of TCN concentration acquired during river transport is negligible compared to TCN concentration acquired on a hillslope, although a clast size–TCN concentration relationship can result from or be modified by clast attrition. On the contrary, aggrading catchments may show a significant clast size-dependent TCN concentration increase during river transport. This may introduce a small bias in the TCN-derived catchment erosion rate, but it could be used positively to quantify the mean transport velocity of clasts of different sizes over thousands of years. In addition, the lack of correlation between TCN concentration and clast size does not imply that the mean transport velocity is the same for all clast size fractions. Overall, our study provides an alternative explanation for observed clast size-dependent TCN concentrations and brings to the fore the need for measuring TCN concentration in larger clast size fractions than is usually done. To see if the byproducts of abrasion dilute or increase the TCN concentration of sand, all products should be included in a future study." @default.
- W2034760319 created "2016-06-24" @default.
- W2034760319 creator A5035952767 @default.
- W2034760319 creator A5049113005 @default.
- W2034760319 creator A5065911112 @default.
- W2034760319 date "2009-04-01" @default.
- W2034760319 modified "2023-09-30" @default.
- W2034760319 title "Theoretical cosmogenic nuclide concentration in river bed load clasts: Does it depend on clast size?" @default.
- W2034760319 cites W1885487314 @default.
- W2034760319 cites W1964788214 @default.
- W2034760319 cites W1966672649 @default.
- W2034760319 cites W1968998174 @default.
- W2034760319 cites W1972016282 @default.
- W2034760319 cites W1973493124 @default.
- W2034760319 cites W1975237794 @default.
- W2034760319 cites W1975350041 @default.
- W2034760319 cites W1975702877 @default.
- W2034760319 cites W1985552270 @default.
- W2034760319 cites W1986915412 @default.
- W2034760319 cites W1987684185 @default.
- W2034760319 cites W1991063688 @default.
- W2034760319 cites W1992326160 @default.
- W2034760319 cites W1993999355 @default.
- W2034760319 cites W1994291118 @default.
- W2034760319 cites W1995176472 @default.
- W2034760319 cites W2002473398 @default.
- W2034760319 cites W2002606625 @default.
- W2034760319 cites W2007255999 @default.
- W2034760319 cites W2007711793 @default.
- W2034760319 cites W2009425598 @default.
- W2034760319 cites W2016055802 @default.
- W2034760319 cites W2020093162 @default.
- W2034760319 cites W2020097204 @default.
- W2034760319 cites W2022154120 @default.
- W2034760319 cites W2025187771 @default.
- W2034760319 cites W2025802385 @default.
- W2034760319 cites W2026134530 @default.
- W2034760319 cites W2027336503 @default.
- W2034760319 cites W20277813 @default.
- W2034760319 cites W2027913477 @default.
- W2034760319 cites W2030944530 @default.
- W2034760319 cites W2033729464 @default.
- W2034760319 cites W2035039777 @default.
- W2034760319 cites W2035750259 @default.
- W2034760319 cites W2051271933 @default.
- W2034760319 cites W2061491824 @default.
- W2034760319 cites W2061611360 @default.
- W2034760319 cites W2070193621 @default.
- W2034760319 cites W2074046261 @default.
- W2034760319 cites W2078074044 @default.
- W2034760319 cites W2082230043 @default.
- W2034760319 cites W2082495366 @default.
- W2034760319 cites W2086840503 @default.
- W2034760319 cites W2089783606 @default.
- W2034760319 cites W2093570562 @default.
- W2034760319 cites W2095194310 @default.
- W2034760319 cites W2098612703 @default.
- W2034760319 cites W2098797024 @default.
- W2034760319 cites W2099338989 @default.
- W2034760319 cites W2102313707 @default.
- W2034760319 cites W2103067468 @default.
- W2034760319 cites W2111996152 @default.
- W2034760319 cites W2115548465 @default.
- W2034760319 cites W2123594378 @default.
- W2034760319 cites W2124588256 @default.
- W2034760319 cites W2127273188 @default.
- W2034760319 cites W2132043686 @default.
- W2034760319 cites W2134343952 @default.
- W2034760319 cites W2135620740 @default.
- W2034760319 cites W2136338903 @default.
- W2034760319 cites W2150227691 @default.
- W2034760319 cites W2153853422 @default.
- W2034760319 cites W2160329343 @default.
- W2034760319 cites W2163717500 @default.
- W2034760319 cites W2168133538 @default.
- W2034760319 cites W2260801966 @default.
- W2034760319 cites W4245230373 @default.
- W2034760319 doi "https://doi.org/10.1016/j.quageo.2008.11.004" @default.
- W2034760319 hasPublicationYear "2009" @default.
- W2034760319 type Work @default.
- W2034760319 sameAs 2034760319 @default.
- W2034760319 citedByCount "23" @default.
- W2034760319 countsByYear W20347603192013 @default.
- W2034760319 countsByYear W20347603192014 @default.
- W2034760319 countsByYear W20347603192015 @default.
- W2034760319 countsByYear W20347603192016 @default.
- W2034760319 countsByYear W20347603192019 @default.
- W2034760319 countsByYear W20347603192022 @default.
- W2034760319 crossrefType "journal-article" @default.
- W2034760319 hasAuthorship W2034760319A5035952767 @default.
- W2034760319 hasAuthorship W2034760319A5049113005 @default.
- W2034760319 hasAuthorship W2034760319A5065911112 @default.
- W2034760319 hasConcept C101140149 @default.
- W2034760319 hasConcept C109007969 @default.
- W2034760319 hasConcept C111309251 @default.
- W2034760319 hasConcept C114793014 @default.
- W2034760319 hasConcept C121332964 @default.
- W2034760319 hasConcept C122792734 @default.