Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034777315> ?p ?o ?g. }
- W2034777315 endingPage "P03021" @default.
- W2034777315 startingPage "P03021" @default.
- W2034777315 abstract "We present a method of general applicability for finding exact or accurate approximations to bond percolation thresholds for a wide class of lattices. To every lattice we sytematically associate a polynomial, the root of which in $[0,1]$ is the conjectured critical point. The method makes the correct prediction for every exactly solved problem, and comparison with numerical results shows that it is very close, but not exact, for many others. We focus primarily on the Archimedean lattices, in which all vertices are equivalent, but this restriction is not crucial. Some results we find are kagome: $p_c=0.524430...$, $(3,12^2): p_c=0.740423...$, $(3^3,4^2): p_c=0.419615...$, $(3,4,6,4):p_c=0.524821...$, $(4,8^2):p_c=0.676835...$, $(3^2,4,3,4)$: $p_c=0.414120...$ . The results are generally within $10^{-5}$ of numerical estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in the formulas (if they are not exact) are less than $10^{-6}$." @default.
- W2034777315 created "2016-06-24" @default.
- W2034777315 creator A5055114207 @default.
- W2034777315 creator A5059228182 @default.
- W2034777315 date "2010-03-24" @default.
- W2034777315 modified "2023-09-27" @default.
- W2034777315 title "Critical surfaces for general inhomogeneous bond percolation problems" @default.
- W2034777315 cites W1529174649 @default.
- W2034777315 cites W1610677200 @default.
- W2034777315 cites W1646063911 @default.
- W2034777315 cites W1965511886 @default.
- W2034777315 cites W1970811763 @default.
- W2034777315 cites W1972850107 @default.
- W2034777315 cites W1977139549 @default.
- W2034777315 cites W1980918126 @default.
- W2034777315 cites W1985641611 @default.
- W2034777315 cites W1990491705 @default.
- W2034777315 cites W1996399134 @default.
- W2034777315 cites W2008325334 @default.
- W2034777315 cites W2010087010 @default.
- W2034777315 cites W2013649325 @default.
- W2034777315 cites W2032718312 @default.
- W2034777315 cites W2034923795 @default.
- W2034777315 cites W2037545200 @default.
- W2034777315 cites W2040109070 @default.
- W2034777315 cites W2045907436 @default.
- W2034777315 cites W2046732878 @default.
- W2034777315 cites W2065625052 @default.
- W2034777315 cites W2068593432 @default.
- W2034777315 cites W2070673991 @default.
- W2034777315 cites W2070844443 @default.
- W2034777315 cites W2073765477 @default.
- W2034777315 cites W2074784178 @default.
- W2034777315 cites W2075780041 @default.
- W2034777315 cites W2076006092 @default.
- W2034777315 cites W2081998042 @default.
- W2034777315 cites W2108971721 @default.
- W2034777315 cites W2118409315 @default.
- W2034777315 cites W2130738042 @default.
- W2034777315 cites W2138360701 @default.
- W2034777315 cites W2163837234 @default.
- W2034777315 cites W3098880727 @default.
- W2034777315 cites W3102784541 @default.
- W2034777315 cites W2059114064 @default.
- W2034777315 doi "https://doi.org/10.1088/1742-5468/2010/03/p03021" @default.
- W2034777315 hasPublicationYear "2010" @default.
- W2034777315 type Work @default.
- W2034777315 sameAs 2034777315 @default.
- W2034777315 citedByCount "22" @default.
- W2034777315 countsByYear W20347773152012 @default.
- W2034777315 countsByYear W20347773152013 @default.
- W2034777315 countsByYear W20347773152014 @default.
- W2034777315 countsByYear W20347773152015 @default.
- W2034777315 countsByYear W20347773152016 @default.
- W2034777315 countsByYear W20347773152017 @default.
- W2034777315 countsByYear W20347773152018 @default.
- W2034777315 countsByYear W20347773152020 @default.
- W2034777315 countsByYear W20347773152021 @default.
- W2034777315 countsByYear W20347773152022 @default.
- W2034777315 countsByYear W20347773152023 @default.
- W2034777315 crossrefType "journal-article" @default.
- W2034777315 hasAuthorship W2034777315A5055114207 @default.
- W2034777315 hasAuthorship W2034777315A5059228182 @default.
- W2034777315 hasBestOaLocation W20347773152 @default.
- W2034777315 hasConcept C114614502 @default.
- W2034777315 hasConcept C118615104 @default.
- W2034777315 hasConcept C120665830 @default.
- W2034777315 hasConcept C121332964 @default.
- W2034777315 hasConcept C134306372 @default.
- W2034777315 hasConcept C154945302 @default.
- W2034777315 hasConcept C169760540 @default.
- W2034777315 hasConcept C192209626 @default.
- W2034777315 hasConcept C196298200 @default.
- W2034777315 hasConcept C24890656 @default.
- W2034777315 hasConcept C2524010 @default.
- W2034777315 hasConcept C2729557 @default.
- W2034777315 hasConcept C2777212361 @default.
- W2034777315 hasConcept C2779168147 @default.
- W2034777315 hasConcept C2780457167 @default.
- W2034777315 hasConcept C2781204021 @default.
- W2034777315 hasConcept C33923547 @default.
- W2034777315 hasConcept C41008148 @default.
- W2034777315 hasConcept C520416788 @default.
- W2034777315 hasConcept C62520636 @default.
- W2034777315 hasConcept C69990965 @default.
- W2034777315 hasConcept C86803240 @default.
- W2034777315 hasConceptScore W2034777315C114614502 @default.
- W2034777315 hasConceptScore W2034777315C118615104 @default.
- W2034777315 hasConceptScore W2034777315C120665830 @default.
- W2034777315 hasConceptScore W2034777315C121332964 @default.
- W2034777315 hasConceptScore W2034777315C134306372 @default.
- W2034777315 hasConceptScore W2034777315C154945302 @default.
- W2034777315 hasConceptScore W2034777315C169760540 @default.
- W2034777315 hasConceptScore W2034777315C192209626 @default.
- W2034777315 hasConceptScore W2034777315C196298200 @default.
- W2034777315 hasConceptScore W2034777315C24890656 @default.
- W2034777315 hasConceptScore W2034777315C2524010 @default.
- W2034777315 hasConceptScore W2034777315C2729557 @default.