Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034787940> ?p ?o ?g. }
- W2034787940 endingPage "1922" @default.
- W2034787940 startingPage "1914" @default.
- W2034787940 abstract "Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature." @default.
- W2034787940 created "2016-06-24" @default.
- W2034787940 creator A5014488129 @default.
- W2034787940 creator A5025500532 @default.
- W2034787940 creator A5028461481 @default.
- W2034787940 creator A5068308446 @default.
- W2034787940 creator A5072361735 @default.
- W2034787940 date "2013-03-14" @default.
- W2034787940 modified "2023-10-18" @default.
- W2034787940 title "Magic-Angle Spinning NMR of Cold Samples" @default.
- W2034787940 cites W171677740 @default.
- W2034787940 cites W1964246362 @default.
- W2034787940 cites W1965346021 @default.
- W2034787940 cites W1966153665 @default.
- W2034787940 cites W1967256267 @default.
- W2034787940 cites W1971741960 @default.
- W2034787940 cites W1973487225 @default.
- W2034787940 cites W1974711152 @default.
- W2034787940 cites W1976499164 @default.
- W2034787940 cites W1977083199 @default.
- W2034787940 cites W1979329312 @default.
- W2034787940 cites W1981051329 @default.
- W2034787940 cites W1984798789 @default.
- W2034787940 cites W1992414664 @default.
- W2034787940 cites W1995747610 @default.
- W2034787940 cites W2006367513 @default.
- W2034787940 cites W2016689264 @default.
- W2034787940 cites W2024392908 @default.
- W2034787940 cites W2025754406 @default.
- W2034787940 cites W2028316411 @default.
- W2034787940 cites W2038572122 @default.
- W2034787940 cites W2048152752 @default.
- W2034787940 cites W2049394618 @default.
- W2034787940 cites W2055217412 @default.
- W2034787940 cites W2056742288 @default.
- W2034787940 cites W2062682367 @default.
- W2034787940 cites W2064225366 @default.
- W2034787940 cites W2066206255 @default.
- W2034787940 cites W2066395033 @default.
- W2034787940 cites W2073471770 @default.
- W2034787940 cites W2075072191 @default.
- W2034787940 cites W2075277965 @default.
- W2034787940 cites W2078969456 @default.
- W2034787940 cites W2079705450 @default.
- W2034787940 cites W2091670229 @default.
- W2034787940 cites W2097699615 @default.
- W2034787940 cites W2103517567 @default.
- W2034787940 cites W2106302673 @default.
- W2034787940 cites W2135757940 @default.
- W2034787940 cites W2148898974 @default.
- W2034787940 cites W2157677712 @default.
- W2034787940 cites W2160119905 @default.
- W2034787940 cites W2163468629 @default.
- W2034787940 cites W2164358100 @default.
- W2034787940 cites W2169253558 @default.
- W2034787940 cites W2320297317 @default.
- W2034787940 cites W2413089188 @default.
- W2034787940 cites W64041536 @default.
- W2034787940 doi "https://doi.org/10.1021/ar300323c" @default.
- W2034787940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23488538" @default.
- W2034787940 hasPublicationYear "2013" @default.
- W2034787940 type Work @default.
- W2034787940 sameAs 2034787940 @default.
- W2034787940 citedByCount "38" @default.
- W2034787940 countsByYear W20347879402013 @default.
- W2034787940 countsByYear W20347879402014 @default.
- W2034787940 countsByYear W20347879402015 @default.
- W2034787940 countsByYear W20347879402016 @default.
- W2034787940 countsByYear W20347879402017 @default.
- W2034787940 countsByYear W20347879402018 @default.
- W2034787940 countsByYear W20347879402019 @default.
- W2034787940 countsByYear W20347879402020 @default.
- W2034787940 countsByYear W20347879402021 @default.
- W2034787940 countsByYear W20347879402022 @default.
- W2034787940 crossrefType "journal-article" @default.
- W2034787940 hasAuthorship W2034787940A5014488129 @default.
- W2034787940 hasAuthorship W2034787940A5025500532 @default.
- W2034787940 hasAuthorship W2034787940A5028461481 @default.
- W2034787940 hasAuthorship W2034787940A5068308446 @default.
- W2034787940 hasAuthorship W2034787940A5072361735 @default.
- W2034787940 hasConcept C121332964 @default.
- W2034787940 hasConcept C153202636 @default.
- W2034787940 hasConcept C154815118 @default.
- W2034787940 hasConcept C159467904 @default.
- W2034787940 hasConcept C163111631 @default.
- W2034787940 hasConcept C178790620 @default.
- W2034787940 hasConcept C185592680 @default.
- W2034787940 hasConcept C188027245 @default.
- W2034787940 hasConcept C192562407 @default.
- W2034787940 hasConcept C32909587 @default.
- W2034787940 hasConcept C46141821 @default.
- W2034787940 hasConcept C66974803 @default.
- W2034787940 hasConcept C77872520 @default.
- W2034787940 hasConcept C84935128 @default.
- W2034787940 hasConceptScore W2034787940C121332964 @default.
- W2034787940 hasConceptScore W2034787940C153202636 @default.
- W2034787940 hasConceptScore W2034787940C154815118 @default.
- W2034787940 hasConceptScore W2034787940C159467904 @default.