Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034794296> ?p ?o ?g. }
- W2034794296 endingPage "97" @default.
- W2034794296 startingPage "80" @default.
- W2034794296 abstract "Vegetation segmentation from images is an essential issue in the application of computer vision in agriculture. In this paper, we present a new vegetation segmentation method based on Particle Swarm Optimisation (PSO) clustering and morphology modelling in CIE L ∗ a ∗ b ∗ colour space. At the off-line learning stage, a new method is put forward to determine the clustering number. Secondly, the tools of morphological dilation and erosion are employed to establish the vegetation colour model. At the online segmentation stage, the PSO-based k -means is used to cluster the vegetation image into vegetation classes and non-vegetation classes. Afterwards, the established colour model is used to distinguish the vegetation classes and give the segmentation result. In the experiments, the proposed method was applied to segment 200 smaller regions of the full camera images of rice and 100 smaller regions of the full camera images of cotton. The means of segmentation qualities reached 88.1% and 91.7% respectively. Moreover, the proposed method was compared with three well-known vegetation segmentation methods and two skin segmentation methods. Experiments demonstrate that the proposed method yielded the highest mean of segmentation qualities and lowest standard deviations of segmentation qualities. In addition, the vegetation colour models built with different structuring element types are analysed. • A new supervised method is presented to determine the clustering number. • PSO based k -means clustering method is introduced to vegetation segmentation. • A new morphology modelling method is put forward. • Experiments on rice and cotton images with the proposed method are carried out. • Experiments demonstrate well performance of the proposed method." @default.
- W2034794296 created "2016-06-24" @default.
- W2034794296 creator A5008292215 @default.
- W2034794296 creator A5012680409 @default.
- W2034794296 creator A5032365931 @default.
- W2034794296 creator A5036358447 @default.
- W2034794296 creator A5041146584 @default.
- W2034794296 creator A5076969189 @default.
- W2034794296 creator A5077530748 @default.
- W2034794296 date "2014-09-01" @default.
- W2034794296 modified "2023-09-30" @default.
- W2034794296 title "Vegetation segmentation robust to illumination variations based on clustering and morphology modelling" @default.
- W2034794296 cites W1584935767 @default.
- W2034794296 cites W1587248362 @default.
- W2034794296 cites W1973685959 @default.
- W2034794296 cites W1977093830 @default.
- W2034794296 cites W2001082716 @default.
- W2034794296 cites W2018724743 @default.
- W2034794296 cites W2027609704 @default.
- W2034794296 cites W2039952872 @default.
- W2034794296 cites W2044651338 @default.
- W2034794296 cites W2048750869 @default.
- W2034794296 cites W2049521380 @default.
- W2034794296 cites W2059471177 @default.
- W2034794296 cites W2066312471 @default.
- W2034794296 cites W2069292559 @default.
- W2034794296 cites W2069693699 @default.
- W2034794296 cites W2073105997 @default.
- W2034794296 cites W2074336377 @default.
- W2034794296 cites W2077758750 @default.
- W2034794296 cites W2078999983 @default.
- W2034794296 cites W2080178568 @default.
- W2034794296 cites W2081030074 @default.
- W2034794296 cites W2086212898 @default.
- W2034794296 cites W2093020519 @default.
- W2034794296 cites W2104199171 @default.
- W2034794296 cites W2118015877 @default.
- W2034794296 cites W2119933653 @default.
- W2034794296 cites W2133580185 @default.
- W2034794296 cites W2144157054 @default.
- W2034794296 cites W2153746365 @default.
- W2034794296 cites W2155652607 @default.
- W2034794296 cites W2156727064 @default.
- W2034794296 cites W2158243933 @default.
- W2034794296 cites W2163450852 @default.
- W2034794296 cites W2201752477 @default.
- W2034794296 doi "https://doi.org/10.1016/j.biosystemseng.2014.06.015" @default.
- W2034794296 hasPublicationYear "2014" @default.
- W2034794296 type Work @default.
- W2034794296 sameAs 2034794296 @default.
- W2034794296 citedByCount "46" @default.
- W2034794296 countsByYear W20347942962015 @default.
- W2034794296 countsByYear W20347942962016 @default.
- W2034794296 countsByYear W20347942962017 @default.
- W2034794296 countsByYear W20347942962018 @default.
- W2034794296 countsByYear W20347942962019 @default.
- W2034794296 countsByYear W20347942962020 @default.
- W2034794296 countsByYear W20347942962021 @default.
- W2034794296 countsByYear W20347942962022 @default.
- W2034794296 countsByYear W20347942962023 @default.
- W2034794296 crossrefType "journal-article" @default.
- W2034794296 hasAuthorship W2034794296A5008292215 @default.
- W2034794296 hasAuthorship W2034794296A5012680409 @default.
- W2034794296 hasAuthorship W2034794296A5032365931 @default.
- W2034794296 hasAuthorship W2034794296A5036358447 @default.
- W2034794296 hasAuthorship W2034794296A5041146584 @default.
- W2034794296 hasAuthorship W2034794296A5076969189 @default.
- W2034794296 hasAuthorship W2034794296A5077530748 @default.
- W2034794296 hasConcept C115961682 @default.
- W2034794296 hasConcept C124504099 @default.
- W2034794296 hasConcept C142724271 @default.
- W2034794296 hasConcept C153180895 @default.
- W2034794296 hasConcept C154945302 @default.
- W2034794296 hasConcept C185568154 @default.
- W2034794296 hasConcept C205649164 @default.
- W2034794296 hasConcept C206824153 @default.
- W2034794296 hasConcept C2776133958 @default.
- W2034794296 hasConcept C31972630 @default.
- W2034794296 hasConcept C33923547 @default.
- W2034794296 hasConcept C41008148 @default.
- W2034794296 hasConcept C65885262 @default.
- W2034794296 hasConcept C71924100 @default.
- W2034794296 hasConcept C73555534 @default.
- W2034794296 hasConcept C74032544 @default.
- W2034794296 hasConcept C89600930 @default.
- W2034794296 hasConcept C9417928 @default.
- W2034794296 hasConceptScore W2034794296C115961682 @default.
- W2034794296 hasConceptScore W2034794296C124504099 @default.
- W2034794296 hasConceptScore W2034794296C142724271 @default.
- W2034794296 hasConceptScore W2034794296C153180895 @default.
- W2034794296 hasConceptScore W2034794296C154945302 @default.
- W2034794296 hasConceptScore W2034794296C185568154 @default.
- W2034794296 hasConceptScore W2034794296C205649164 @default.
- W2034794296 hasConceptScore W2034794296C206824153 @default.
- W2034794296 hasConceptScore W2034794296C2776133958 @default.
- W2034794296 hasConceptScore W2034794296C31972630 @default.
- W2034794296 hasConceptScore W2034794296C33923547 @default.
- W2034794296 hasConceptScore W2034794296C41008148 @default.