Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034803951> ?p ?o ?g. }
- W2034803951 endingPage "93" @default.
- W2034803951 startingPage "67" @default.
- W2034803951 abstract "This study evaluates the potential of decision tree classification algorithms for the classification of hyperspectral data, with the goal of discriminating between different growth scenarios in a cornfield. A comparison was also made between decision tree and artificial neural networks (ANNs) classification accuracies. In the summer of the year 2000, a two-factor field experiment representing different crop conditions was carried out. Corn was grown under four weed management strategies: no weed control, control of grasses, control of broadleaf weeds, and full weed control with nitrogen levels of 60, 120, and 250 N kg/ha. Hyperspectral data using a Compact Airborne Spectrographic Imager were acquired three times during the entire growing season. Decision tree technology was applied to classify different treatments based on the hyperspectral data. Various tree-growing mechanisms were used to improve the accuracy of classification. Misclassification rates of detecting all the combinations of different nitrogen and weed categories were 43, 32, and 40% for hyperspectral data sets obtained at the initial growth, the tasseling and the full maturity stages, respectively. However, satisfactory classification results were obtained when one factor (nitrogen or weed) was considered at a time. In this case, misclassification rates were only 22 and 18% for nitrogen and weeds, respectively, for the data obtained at the tasseling stage. Slightly better results were obtained by following the ANN approach. However, the advantage with the decision tree was the formulation of simple and clear classification rules. The highest accuracy was obtained for the data acquired at tasseling stage. The results indicate the potential of decision tree classification algorithms and ANN usage in the classification of hyperspectral data for crop condition assessment." @default.
- W2034803951 created "2016-06-24" @default.
- W2034803951 creator A5002610959 @default.
- W2034803951 creator A5017021871 @default.
- W2034803951 creator A5042841153 @default.
- W2034803951 creator A5081194091 @default.
- W2034803951 creator A5082432932 @default.
- W2034803951 creator A5084367581 @default.
- W2034803951 date "2003-05-01" @default.
- W2034803951 modified "2023-10-17" @default.
- W2034803951 title "Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn" @default.
- W2034803951 cites W1529517833 @default.
- W2034803951 cites W1965935430 @default.
- W2034803951 cites W1972865914 @default.
- W2034803951 cites W1994238255 @default.
- W2034803951 cites W1998451497 @default.
- W2034803951 cites W2033943160 @default.
- W2034803951 cites W2035549557 @default.
- W2034803951 cites W2038951852 @default.
- W2034803951 cites W2072633546 @default.
- W2034803951 cites W2074839065 @default.
- W2034803951 cites W2080338451 @default.
- W2034803951 cites W2080527151 @default.
- W2034803951 cites W2084219500 @default.
- W2034803951 cites W2084765404 @default.
- W2034803951 cites W2121587220 @default.
- W2034803951 cites W2145397554 @default.
- W2034803951 cites W2148022840 @default.
- W2034803951 cites W2151346242 @default.
- W2034803951 cites W2163654989 @default.
- W2034803951 cites W2168557355 @default.
- W2034803951 cites W2295490662 @default.
- W2034803951 cites W2369078715 @default.
- W2034803951 cites W2434491766 @default.
- W2034803951 cites W2505358912 @default.
- W2034803951 cites W2521491949 @default.
- W2034803951 doi "https://doi.org/10.1016/s0168-1699(03)00020-6" @default.
- W2034803951 hasPublicationYear "2003" @default.
- W2034803951 type Work @default.
- W2034803951 sameAs 2034803951 @default.
- W2034803951 citedByCount "194" @default.
- W2034803951 countsByYear W20348039512012 @default.
- W2034803951 countsByYear W20348039512013 @default.
- W2034803951 countsByYear W20348039512014 @default.
- W2034803951 countsByYear W20348039512015 @default.
- W2034803951 countsByYear W20348039512016 @default.
- W2034803951 countsByYear W20348039512017 @default.
- W2034803951 countsByYear W20348039512018 @default.
- W2034803951 countsByYear W20348039512019 @default.
- W2034803951 countsByYear W20348039512020 @default.
- W2034803951 countsByYear W20348039512021 @default.
- W2034803951 countsByYear W20348039512022 @default.
- W2034803951 countsByYear W20348039512023 @default.
- W2034803951 crossrefType "journal-article" @default.
- W2034803951 hasAuthorship W2034803951A5002610959 @default.
- W2034803951 hasAuthorship W2034803951A5017021871 @default.
- W2034803951 hasAuthorship W2034803951A5042841153 @default.
- W2034803951 hasAuthorship W2034803951A5081194091 @default.
- W2034803951 hasAuthorship W2034803951A5082432932 @default.
- W2034803951 hasAuthorship W2034803951A5084367581 @default.
- W2034803951 hasConcept C119857082 @default.
- W2034803951 hasConcept C127413603 @default.
- W2034803951 hasConcept C137660486 @default.
- W2034803951 hasConcept C147273371 @default.
- W2034803951 hasConcept C154945302 @default.
- W2034803951 hasConcept C159078339 @default.
- W2034803951 hasConcept C2775891814 @default.
- W2034803951 hasConcept C33923547 @default.
- W2034803951 hasConcept C41008148 @default.
- W2034803951 hasConcept C50644808 @default.
- W2034803951 hasConcept C6557445 @default.
- W2034803951 hasConcept C84525736 @default.
- W2034803951 hasConcept C86803240 @default.
- W2034803951 hasConcept C88463610 @default.
- W2034803951 hasConceptScore W2034803951C119857082 @default.
- W2034803951 hasConceptScore W2034803951C127413603 @default.
- W2034803951 hasConceptScore W2034803951C137660486 @default.
- W2034803951 hasConceptScore W2034803951C147273371 @default.
- W2034803951 hasConceptScore W2034803951C154945302 @default.
- W2034803951 hasConceptScore W2034803951C159078339 @default.
- W2034803951 hasConceptScore W2034803951C2775891814 @default.
- W2034803951 hasConceptScore W2034803951C33923547 @default.
- W2034803951 hasConceptScore W2034803951C41008148 @default.
- W2034803951 hasConceptScore W2034803951C50644808 @default.
- W2034803951 hasConceptScore W2034803951C6557445 @default.
- W2034803951 hasConceptScore W2034803951C84525736 @default.
- W2034803951 hasConceptScore W2034803951C86803240 @default.
- W2034803951 hasConceptScore W2034803951C88463610 @default.
- W2034803951 hasIssue "2" @default.
- W2034803951 hasLocation W20348039511 @default.
- W2034803951 hasOpenAccess W2034803951 @default.
- W2034803951 hasPrimaryLocation W20348039511 @default.
- W2034803951 hasRelatedWork W1824646787 @default.
- W2034803951 hasRelatedWork W2017767562 @default.
- W2034803951 hasRelatedWork W2035318466 @default.
- W2034803951 hasRelatedWork W2057906492 @default.
- W2034803951 hasRelatedWork W2187121937 @default.
- W2034803951 hasRelatedWork W2316130569 @default.