Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034809421> ?p ?o ?g. }
- W2034809421 abstract "We model the nonlinear saturation of the $r$-mode instability via three-mode couplings and the effects of the instability on the spin evolution of young neutron stars. We include one mode triplet consisting of the $r$-mode and two near-resonant inertial modes that couple to it. We find that the spectrum of evolutions is more diverse than previously thought. We start our evolutions with a star of temperature $ensuremath{sim}{10}^{10}text{ }text{ }mathrm{K}$ and a spin frequency close to the Kepler break-up frequency. We assume that hyperon bulk viscosity dominates at high temperatures ($Tensuremath{sim}{10}^{9}--{10}^{10}text{ }text{ }mathrm{K}$) and boundary layer viscosity dominates at lower temperatures ($ensuremath{sim}mathrm{text{a few}}ifmmodetimeselsetexttimesfi{}{10}^{8}text{ }text{ }mathrm{K}$). To explore possible nonlinear behavior, we vary properties of the star such as the hyperon superfluid transition temperature, the strength of the boundary layer viscosity, and the fraction of the star that cools via direct URCA reactions. The evolution of the star is dynamic and initially dominated by fast neutrino cooling. Nonlinear effects become important when the $r$-mode amplitude grows above its first parametric instability threshold. The balance between neutrino cooling and viscous heating plays an important role in the evolution. Depending on the initial $r$-mode amplitude, and on the strength of the viscosity and of the cooling this balance can occur at different temperatures. If thermal equilibrium occurs on the $r$-mode stability curve, where gravitational driving equals viscous damping, the evolution may be adequately described by a one-mode model. Otherwise, nonlinear effects are important and lead to various more complicated scenarios. Once thermal balance occurs, the star spins down oscillating between thermal equilibrium states until the instability is no longer active. The average evolution of the mode amplitudes can be approximated by quasistationary states that are determined algebraically. For lower viscosity we observe runaway behavior in which the $r$-mode amplitude passes several parametric instability thresholds. In this case more modes need to be included to model the evolution accurately. In the most optimistic case, we find that gravitational radiation from the $r$-mode instability in a very young, fast spinning neutron star within about 1 Mpc of Earth may be detectable by advanced LIGO for years, and perhaps decades, after formation. Details regarding the amplitude and duration of the emission depend on the internal dissipation of the modes of the star, which would be probed by such detections." @default.
- W2034809421 created "2016-06-24" @default.
- W2034809421 creator A5042892737 @default.
- W2034809421 creator A5076236701 @default.
- W2034809421 creator A5078691132 @default.
- W2034809421 date "2009-05-01" @default.
- W2034809421 modified "2023-09-29" @default.
- W2034809421 title "Spinning down newborn neutron stars: Nonlinear development of the<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>r</mml:mi></mml:math>-mode instability" @default.
- W2034809421 cites W1480126458 @default.
- W2034809421 cites W1485796388 @default.
- W2034809421 cites W1502631567 @default.
- W2034809421 cites W1615681384 @default.
- W2034809421 cites W1966927456 @default.
- W2034809421 cites W1967206153 @default.
- W2034809421 cites W1974643913 @default.
- W2034809421 cites W1983149723 @default.
- W2034809421 cites W1986698473 @default.
- W2034809421 cites W2011591061 @default.
- W2034809421 cites W2011606992 @default.
- W2034809421 cites W2013863497 @default.
- W2034809421 cites W2019862463 @default.
- W2034809421 cites W2021791675 @default.
- W2034809421 cites W2022698773 @default.
- W2034809421 cites W2025639957 @default.
- W2034809421 cites W2026494651 @default.
- W2034809421 cites W2036056653 @default.
- W2034809421 cites W2045649978 @default.
- W2034809421 cites W2045694681 @default.
- W2034809421 cites W2047479827 @default.
- W2034809421 cites W2048663379 @default.
- W2034809421 cites W2054790748 @default.
- W2034809421 cites W2056543278 @default.
- W2034809421 cites W2057439225 @default.
- W2034809421 cites W2058134720 @default.
- W2034809421 cites W2064649804 @default.
- W2034809421 cites W2081454720 @default.
- W2034809421 cites W2081545524 @default.
- W2034809421 cites W2085339226 @default.
- W2034809421 cites W2089188030 @default.
- W2034809421 cites W2091990846 @default.
- W2034809421 cites W2092747576 @default.
- W2034809421 cites W2093261654 @default.
- W2034809421 cites W2097375932 @default.
- W2034809421 cites W2116961354 @default.
- W2034809421 cites W2117424975 @default.
- W2034809421 cites W2119497307 @default.
- W2034809421 cites W2144732123 @default.
- W2034809421 cites W2295410577 @default.
- W2034809421 cites W2323329379 @default.
- W2034809421 cites W2333890143 @default.
- W2034809421 cites W2592733448 @default.
- W2034809421 cites W2594385597 @default.
- W2034809421 cites W3098562513 @default.
- W2034809421 cites W3099003725 @default.
- W2034809421 cites W3099949215 @default.
- W2034809421 cites W3100618079 @default.
- W2034809421 cites W3101546983 @default.
- W2034809421 cites W3102236006 @default.
- W2034809421 cites W3105161685 @default.
- W2034809421 cites W3122130680 @default.
- W2034809421 cites W4205445407 @default.
- W2034809421 cites W4252860733 @default.
- W2034809421 cites W4298271503 @default.
- W2034809421 doi "https://doi.org/10.1103/physrevd.79.104003" @default.
- W2034809421 hasPublicationYear "2009" @default.
- W2034809421 type Work @default.
- W2034809421 sameAs 2034809421 @default.
- W2034809421 citedByCount "90" @default.
- W2034809421 countsByYear W20348094212012 @default.
- W2034809421 countsByYear W20348094212013 @default.
- W2034809421 countsByYear W20348094212014 @default.
- W2034809421 countsByYear W20348094212015 @default.
- W2034809421 countsByYear W20348094212016 @default.
- W2034809421 countsByYear W20348094212017 @default.
- W2034809421 countsByYear W20348094212018 @default.
- W2034809421 countsByYear W20348094212019 @default.
- W2034809421 countsByYear W20348094212020 @default.
- W2034809421 countsByYear W20348094212021 @default.
- W2034809421 countsByYear W20348094212022 @default.
- W2034809421 countsByYear W20348094212023 @default.
- W2034809421 crossrefType "journal-article" @default.
- W2034809421 hasAuthorship W2034809421A5042892737 @default.
- W2034809421 hasAuthorship W2034809421A5076236701 @default.
- W2034809421 hasAuthorship W2034809421A5078691132 @default.
- W2034809421 hasBestOaLocation W20348094212 @default.
- W2034809421 hasConcept C121332964 @default.
- W2034809421 hasConcept C150846664 @default.
- W2034809421 hasConcept C180205008 @default.
- W2034809421 hasConcept C185544564 @default.
- W2034809421 hasConcept C186453547 @default.
- W2034809421 hasConcept C192887742 @default.
- W2034809421 hasConcept C207821765 @default.
- W2034809421 hasConcept C26873012 @default.
- W2034809421 hasConcept C44870925 @default.
- W2034809421 hasConcept C62520636 @default.
- W2034809421 hasConceptScore W2034809421C121332964 @default.
- W2034809421 hasConceptScore W2034809421C150846664 @default.
- W2034809421 hasConceptScore W2034809421C180205008 @default.
- W2034809421 hasConceptScore W2034809421C185544564 @default.
- W2034809421 hasConceptScore W2034809421C186453547 @default.