Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034883403> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2034883403 abstract "Spiking models of small areas of the neocortex have so far mainly been studied under the assumption that neurons are sparsely and randomly connected. The absence of structure allows for the use of powerful mean-field approximation techniques, whereby statistical properties of spike trains such as the average firing rate and the interspike interval coefficient of variation are described in terms of their distributions across neurons [1,2]. Such approaches cannot offer a more detailed description as to what patterns of activity the network spontaneously produces. The macroscopic state is unstructured with predictable mean, while during the asynchronous irregular firing the microscopic dynamics is chaotic. It therefore becomes hard to think of the representation of information in cortex if its activity is neither structured nor reproducible.Connectivity in cortex is not purely random: published data on synaptic connectivity suggests a model of cortical connectivity in which excitatory neurons make long-range patchy projections while inhibitory neurons only target their close neighbours [3]. How does this structure affect the dynamics of the network? Can we hope to describe it in terms of activity patterns, therefore going beyond the mean-field predictions mentioned above? Recent theoretical considerations [4] have suggested a positive answer, by showing that balanced networks should be expected to transiently amplify certain activity patterns without slowing the dynamics down (“balanced amplification”). Underlying this theory is the nature of the connectivity matrix, “nonnormal” in the mathematical sense [5]. The amplified patterns depend on the details of the connectivity and are best revealed by a Schur decomposition of the connectivity matrix.We examine the dynamics of linear networks with patchy connectivity structures. With long-range patchy inhibition, about 25% of the eigenvalues of the connectivity matrix have strictly positive real parts. Since real parts must be smaller than one for stability, the overall magnitude of the connections, and therefore also the amount of transient amplification, need to be constrained. The presence of eigenvalues with real parts close to one also predicts dynamical slowing with a small number of modes (typically < 5) completely dominating the dynamics and limiting the representational power. If inhibition is kept local, as it seems to be in nature, the connectivity matrix has the nice property that all its eigenvalues have negative real parts. The network can thus be arbitrarily rescaled and yet remain stable. Strong amplification can coexist with fast network dynamics that yields a rich repertoire of transient spatial states.Extensive simulations of the noise-driven linear networks confirm the theoretical insights. Importantly, we also ran large-scale simulations of conductance-based spiking neurons with sparse connectivity spatially organized as mentioned above. Despite the strong deviation from linearity, the network activity matches the linear predictions remarkably well, in terms of both speed and amplification of the Schur modes. We conclude that the activity in spatially organised networks is highly structured and can be described on the level of two-dimensional activity patterns. Local inhibition, but not long-range inhibition, enables rapid state switching on the time scale of a few milliseconds." @default.
- W2034883403 created "2016-06-24" @default.
- W2034883403 creator A5015666227 @default.
- W2034883403 creator A5085417824 @default.
- W2034883403 creator A5089163572 @default.
- W2034883403 date "2011-07-18" @default.
- W2034883403 modified "2023-10-02" @default.
- W2034883403 title "Fast and richly structured activity in cortical networks with local inhibition" @default.
- W2034883403 cites W149522324 @default.
- W2034883403 cites W1582051163 @default.
- W2034883403 cites W2087301801 @default.
- W2034883403 cites W2096827445 @default.
- W2034883403 cites W2106566258 @default.
- W2034883403 doi "https://doi.org/10.1186/1471-2202-12-s1-p121" @default.
- W2034883403 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3240214" @default.
- W2034883403 hasPublicationYear "2011" @default.
- W2034883403 type Work @default.
- W2034883403 sameAs 2034883403 @default.
- W2034883403 citedByCount "0" @default.
- W2034883403 crossrefType "journal-article" @default.
- W2034883403 hasAuthorship W2034883403A5015666227 @default.
- W2034883403 hasAuthorship W2034883403A5085417824 @default.
- W2034883403 hasAuthorship W2034883403A5089163572 @default.
- W2034883403 hasBestOaLocation W20348834031 @default.
- W2034883403 hasConcept C118615104 @default.
- W2034883403 hasConcept C121332964 @default.
- W2034883403 hasConcept C121864883 @default.
- W2034883403 hasConcept C123757187 @default.
- W2034883403 hasConcept C15744967 @default.
- W2034883403 hasConcept C169760540 @default.
- W2034883403 hasConcept C17744445 @default.
- W2034883403 hasConcept C199539241 @default.
- W2034883403 hasConcept C2776359362 @default.
- W2034883403 hasConcept C2777222312 @default.
- W2034883403 hasConcept C33923547 @default.
- W2034883403 hasConcept C41008148 @default.
- W2034883403 hasConcept C94625758 @default.
- W2034883403 hasConceptScore W2034883403C118615104 @default.
- W2034883403 hasConceptScore W2034883403C121332964 @default.
- W2034883403 hasConceptScore W2034883403C121864883 @default.
- W2034883403 hasConceptScore W2034883403C123757187 @default.
- W2034883403 hasConceptScore W2034883403C15744967 @default.
- W2034883403 hasConceptScore W2034883403C169760540 @default.
- W2034883403 hasConceptScore W2034883403C17744445 @default.
- W2034883403 hasConceptScore W2034883403C199539241 @default.
- W2034883403 hasConceptScore W2034883403C2776359362 @default.
- W2034883403 hasConceptScore W2034883403C2777222312 @default.
- W2034883403 hasConceptScore W2034883403C33923547 @default.
- W2034883403 hasConceptScore W2034883403C41008148 @default.
- W2034883403 hasConceptScore W2034883403C94625758 @default.
- W2034883403 hasLocation W20348834031 @default.
- W2034883403 hasLocation W20348834032 @default.
- W2034883403 hasLocation W20348834033 @default.
- W2034883403 hasOpenAccess W2034883403 @default.
- W2034883403 hasPrimaryLocation W20348834031 @default.
- W2034883403 hasRelatedWork W1518749163 @default.
- W2034883403 hasRelatedWork W1803714320 @default.
- W2034883403 hasRelatedWork W1825637327 @default.
- W2034883403 hasRelatedWork W1930365275 @default.
- W2034883403 hasRelatedWork W2033710332 @default.
- W2034883403 hasRelatedWork W2038511109 @default.
- W2034883403 hasRelatedWork W2056808251 @default.
- W2034883403 hasRelatedWork W2086525804 @default.
- W2034883403 hasRelatedWork W2086765461 @default.
- W2034883403 hasRelatedWork W2137058429 @default.
- W2034883403 hasRelatedWork W2142488539 @default.
- W2034883403 hasRelatedWork W2343265892 @default.
- W2034883403 hasRelatedWork W2594360540 @default.
- W2034883403 hasRelatedWork W2652896916 @default.
- W2034883403 hasRelatedWork W2952541907 @default.
- W2034883403 hasRelatedWork W2952635747 @default.
- W2034883403 hasRelatedWork W2953001783 @default.
- W2034883403 hasRelatedWork W2967715952 @default.
- W2034883403 hasRelatedWork W3026745237 @default.
- W2034883403 hasRelatedWork W2740932809 @default.
- W2034883403 isParatext "false" @default.
- W2034883403 isRetracted "false" @default.
- W2034883403 magId "2034883403" @default.
- W2034883403 workType "article" @default.