Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034888938> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2034888938 endingPage "4525" @default.
- W2034888938 startingPage "4499" @default.
- W2034888938 abstract "Abstract This paper describes a methodology for the design of a model-based diagnostic unit. The objective of the work is to define a suitable procedure for the design and verification of diagnostic performance in a simulated environment, trying to maximise the generalisation capability of pattern recognition algorithms when tested with real experimental signals. The system is designed and experimentally verified to solve the fatigue crack damage localisation and assessment problems in a realistic, though rather idealised, Structural Health Monitoring (SHM) framework. The study is applied to a piezoelectric Lamb wave sensor network and is validated experimentally on a simple aluminium skin. The analytically-derived dispersion curves for Lamb wave propagation in aluminium are used in order to determine the wave velocities and thus their arrival time at given sensors. The Local Interaction Simulation Approach (LISA) is used to simulate the entire waveform propagation. Once the agreement between analytical, numerical and experimental data is verified on a baseline undamaged condition, the parametric LISA model has been iteratively run, varying the position and the length of a crack on an aluminium skin panel, generating the virtual experience necessary to train a supervised learning regressor based on Artificial Neural Networks (ANNs). After the algorithm structure has been statistically optimised, the network sensitivity to input variations has been evaluated on simulated signals through a technique inspired by information gap theory. Real Lamb wave signals are then processed into the algorithm, providing feasible real-time indication of damage characteristics." @default.
- W2034888938 created "2016-06-24" @default.
- W2034888938 creator A5017996489 @default.
- W2034888938 creator A5041892789 @default.
- W2034888938 creator A5082876993 @default.
- W2034888938 date "2014-09-01" @default.
- W2034888938 modified "2023-09-23" @default.
- W2034888938 title "A numerically-enhanced machine learning approach to damage diagnosis using a Lamb wave sensing network" @default.
- W2034888938 cites W1967115876 @default.
- W2034888938 cites W1971452553 @default.
- W2034888938 cites W1977457976 @default.
- W2034888938 cites W1987753612 @default.
- W2034888938 cites W1991271890 @default.
- W2034888938 cites W1991539573 @default.
- W2034888938 cites W2020624027 @default.
- W2034888938 cites W2044829866 @default.
- W2034888938 cites W2051934118 @default.
- W2034888938 cites W2055615036 @default.
- W2034888938 cites W2065139282 @default.
- W2034888938 cites W2074523082 @default.
- W2034888938 cites W2092086552 @default.
- W2034888938 cites W2110884158 @default.
- W2034888938 cites W2121998698 @default.
- W2034888938 cites W2146513615 @default.
- W2034888938 cites W4236568146 @default.
- W2034888938 cites W4255231607 @default.
- W2034888938 doi "https://doi.org/10.1016/j.jsv.2014.04.059" @default.
- W2034888938 hasPublicationYear "2014" @default.
- W2034888938 type Work @default.
- W2034888938 sameAs 2034888938 @default.
- W2034888938 citedByCount "49" @default.
- W2034888938 countsByYear W20348889382015 @default.
- W2034888938 countsByYear W20348889382016 @default.
- W2034888938 countsByYear W20348889382017 @default.
- W2034888938 countsByYear W20348889382018 @default.
- W2034888938 countsByYear W20348889382019 @default.
- W2034888938 countsByYear W20348889382020 @default.
- W2034888938 countsByYear W20348889382021 @default.
- W2034888938 countsByYear W20348889382022 @default.
- W2034888938 countsByYear W20348889382023 @default.
- W2034888938 crossrefType "journal-article" @default.
- W2034888938 hasAuthorship W2034888938A5017996489 @default.
- W2034888938 hasAuthorship W2034888938A5041892789 @default.
- W2034888938 hasAuthorship W2034888938A5082876993 @default.
- W2034888938 hasConcept C121332964 @default.
- W2034888938 hasConcept C127413603 @default.
- W2034888938 hasConcept C142358356 @default.
- W2034888938 hasConcept C24890656 @default.
- W2034888938 hasConcept C41008148 @default.
- W2034888938 hasConcept C76155785 @default.
- W2034888938 hasConcept C84174578 @default.
- W2034888938 hasConceptScore W2034888938C121332964 @default.
- W2034888938 hasConceptScore W2034888938C127413603 @default.
- W2034888938 hasConceptScore W2034888938C142358356 @default.
- W2034888938 hasConceptScore W2034888938C24890656 @default.
- W2034888938 hasConceptScore W2034888938C41008148 @default.
- W2034888938 hasConceptScore W2034888938C76155785 @default.
- W2034888938 hasConceptScore W2034888938C84174578 @default.
- W2034888938 hasIssue "19" @default.
- W2034888938 hasLocation W20348889381 @default.
- W2034888938 hasOpenAccess W2034888938 @default.
- W2034888938 hasPrimaryLocation W20348889381 @default.
- W2034888938 hasRelatedWork W1965142618 @default.
- W2034888938 hasRelatedWork W2000170026 @default.
- W2034888938 hasRelatedWork W2062264579 @default.
- W2034888938 hasRelatedWork W2072694377 @default.
- W2034888938 hasRelatedWork W2141361980 @default.
- W2034888938 hasRelatedWork W2231798987 @default.
- W2034888938 hasRelatedWork W2899084033 @default.
- W2034888938 hasRelatedWork W2930018878 @default.
- W2034888938 hasRelatedWork W2969366228 @default.
- W2034888938 hasRelatedWork W3205191577 @default.
- W2034888938 hasVolume "333" @default.
- W2034888938 isParatext "false" @default.
- W2034888938 isRetracted "false" @default.
- W2034888938 magId "2034888938" @default.
- W2034888938 workType "article" @default.