Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034931607> ?p ?o ?g. }
- W2034931607 endingPage "385" @default.
- W2034931607 startingPage "374" @default.
- W2034931607 abstract "Extracting structure of interest from medical images is an important yet tedious work. Due to the image quality, the shape knowledge is widely used for assisting and constraining the segmentation process. In many previous works, shape knowledge was incorporated by first constructing a shape space from training cases, and then constraining the segmentation process to be within the learned shape space. However, such an approach has certain limitations due to the number of variations, eigen-shapemodes, that can be captured in the learned shape space. Moreover, small scale shape variances are usually overwhelmed by those in the large scale, and therefore the local shape information is lost. In this work, we present a multiscale representation for shapes with arbitrary topology, and a fully automatic method to segment the target organ/tissue from medical images using such multiscale shape information and local image features. First, we handle the problem of lacking eigen-shapemodes by providing a multiscale shape representation using the wavelet transform. Consequently, the shape variances existing in the training shapes captured by the statistical learning step are also represented at various scales. Note that by doing so, one can greatly enrich the eigen-shapemodes as well as capture small scale shape changes. Furthermore, in order to make full use of the training information, not only the shape but also the grayscale training images are utilized in a multi-atlas initialization procedure. By combining such initialization with the multiscale shape knowledge, we perform segmentation tests for challenging medical data sets where the target objects have low contrast and sharp corner structures, and demonstrate the statistically significant improvement obtained by employing such multiscale representation, in representing shapes as well as the overall shape based segmentation tasks." @default.
- W2034931607 created "2016-06-24" @default.
- W2034931607 creator A5010407744 @default.
- W2034931607 creator A5012935165 @default.
- W2034931607 creator A5080119679 @default.
- W2034931607 creator A5085876298 @default.
- W2034931607 date "2012-02-01" @default.
- W2034931607 modified "2023-09-27" @default.
- W2034931607 title "Multiscale 3D shape representation and segmentation with applications to hippocampal/caudate extraction from brain MRI" @default.
- W2034931607 cites W132734906 @default.
- W2034931607 cites W1874027545 @default.
- W2034931607 cites W1987869189 @default.
- W2034931607 cites W1991113069 @default.
- W2034931607 cites W1995603102 @default.
- W2034931607 cites W2020999234 @default.
- W2034931607 cites W2032377318 @default.
- W2034931607 cites W2038952578 @default.
- W2034931607 cites W2043647324 @default.
- W2034931607 cites W2058822180 @default.
- W2034931607 cites W2079690285 @default.
- W2034931607 cites W2099290282 @default.
- W2034931607 cites W2104095591 @default.
- W2034931607 cites W2104165122 @default.
- W2034931607 cites W2111991188 @default.
- W2034931607 cites W2113137767 @default.
- W2034931607 cites W2115664739 @default.
- W2034931607 cites W2116040950 @default.
- W2034931607 cites W2121947440 @default.
- W2034931607 cites W2142054519 @default.
- W2034931607 cites W2142152601 @default.
- W2034931607 cites W2143843774 @default.
- W2034931607 cites W2145023731 @default.
- W2034931607 cites W2147484997 @default.
- W2034931607 cites W2149184914 @default.
- W2034931607 cites W2153030337 @default.
- W2034931607 cites W2161237731 @default.
- W2034931607 cites W2164435545 @default.
- W2034931607 cites W2165122923 @default.
- W2034931607 cites W3211330693 @default.
- W2034931607 doi "https://doi.org/10.1016/j.media.2011.10.002" @default.
- W2034931607 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3267872" @default.
- W2034931607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22119491" @default.
- W2034931607 hasPublicationYear "2012" @default.
- W2034931607 type Work @default.
- W2034931607 sameAs 2034931607 @default.
- W2034931607 citedByCount "16" @default.
- W2034931607 countsByYear W20349316072013 @default.
- W2034931607 countsByYear W20349316072014 @default.
- W2034931607 countsByYear W20349316072015 @default.
- W2034931607 countsByYear W20349316072016 @default.
- W2034931607 countsByYear W20349316072017 @default.
- W2034931607 countsByYear W20349316072020 @default.
- W2034931607 countsByYear W20349316072021 @default.
- W2034931607 crossrefType "journal-article" @default.
- W2034931607 hasAuthorship W2034931607A5010407744 @default.
- W2034931607 hasAuthorship W2034931607A5012935165 @default.
- W2034931607 hasAuthorship W2034931607A5080119679 @default.
- W2034931607 hasAuthorship W2034931607A5085876298 @default.
- W2034931607 hasBestOaLocation W20349316072 @default.
- W2034931607 hasConcept C112604564 @default.
- W2034931607 hasConcept C114466953 @default.
- W2034931607 hasConcept C115961682 @default.
- W2034931607 hasConcept C124504099 @default.
- W2034931607 hasConcept C129641003 @default.
- W2034931607 hasConcept C153180895 @default.
- W2034931607 hasConcept C154945302 @default.
- W2034931607 hasConcept C17744445 @default.
- W2034931607 hasConcept C199360897 @default.
- W2034931607 hasConcept C199539241 @default.
- W2034931607 hasConcept C2776359362 @default.
- W2034931607 hasConcept C31972630 @default.
- W2034931607 hasConcept C41008148 @default.
- W2034931607 hasConcept C65885262 @default.
- W2034931607 hasConcept C78201319 @default.
- W2034931607 hasConcept C89600930 @default.
- W2034931607 hasConcept C94625758 @default.
- W2034931607 hasConcept C97686452 @default.
- W2034931607 hasConceptScore W2034931607C112604564 @default.
- W2034931607 hasConceptScore W2034931607C114466953 @default.
- W2034931607 hasConceptScore W2034931607C115961682 @default.
- W2034931607 hasConceptScore W2034931607C124504099 @default.
- W2034931607 hasConceptScore W2034931607C129641003 @default.
- W2034931607 hasConceptScore W2034931607C153180895 @default.
- W2034931607 hasConceptScore W2034931607C154945302 @default.
- W2034931607 hasConceptScore W2034931607C17744445 @default.
- W2034931607 hasConceptScore W2034931607C199360897 @default.
- W2034931607 hasConceptScore W2034931607C199539241 @default.
- W2034931607 hasConceptScore W2034931607C2776359362 @default.
- W2034931607 hasConceptScore W2034931607C31972630 @default.
- W2034931607 hasConceptScore W2034931607C41008148 @default.
- W2034931607 hasConceptScore W2034931607C65885262 @default.
- W2034931607 hasConceptScore W2034931607C78201319 @default.
- W2034931607 hasConceptScore W2034931607C89600930 @default.
- W2034931607 hasConceptScore W2034931607C94625758 @default.
- W2034931607 hasConceptScore W2034931607C97686452 @default.
- W2034931607 hasIssue "2" @default.
- W2034931607 hasLocation W20349316071 @default.
- W2034931607 hasLocation W20349316072 @default.