Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034933046> ?p ?o ?g. }
- W2034933046 endingPage "271" @default.
- W2034933046 startingPage "252" @default.
- W2034933046 abstract "Downed dead wood is regarded as an important part of forest ecosystems from an ecological perspective, which drives the need for investigating its spatial distribution. Based on several studies, Airborne Laser Scanning (ALS) has proven to be a valuable remote sensing technique for obtaining such information. This paper describes a unified approach to the detection of fallen trees from ALS point clouds based on merging short segments into whole stems using the Normalized Cut algorithm. We introduce a new method of defining the segment similarity function for the clustering procedure, where the attribute weights are learned from labeled data. Based on a relationship between Normalized Cut’s similarity function and a class of regression models, we show how to learn the similarity function by training a classifier. Furthermore, we propose using an appearance-based stopping criterion for the graph cut algorithm as an alternative to the standard Normalized Cut threshold approach. We set up a virtual fallen tree generation scheme to simulate complex forest scenarios with multiple overlapping fallen stems. This simulated data is then used as a basis to learn both the similarity function and the stopping criterion for Normalized Cut. We evaluate our approach on 5 plots from the strictly protected mixed mountain forest within the Bavarian Forest National Park using reference data obtained via a manual field inventory. The experimental results show that our method is able to detect up to 90% of fallen stems in plots having 30–40% overstory cover with a correctness exceeding 80%, even in quite complex forest scenes. Moreover, the performance for feature weights trained on simulated data is competitive with the case when the weights are calculated using a grid search on the test data, which indicates that the learned similarity function and stopping criterion can generalize well on new plots." @default.
- W2034933046 created "2016-06-24" @default.
- W2034933046 creator A5006620203 @default.
- W2034933046 creator A5023786904 @default.
- W2034933046 creator A5053008757 @default.
- W2034933046 creator A5070500440 @default.
- W2034933046 creator A5076060245 @default.
- W2034933046 date "2015-07-01" @default.
- W2034933046 modified "2023-09-30" @default.
- W2034933046 title "Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation" @default.
- W2034933046 cites W1563480203 @default.
- W2034933046 cites W1564871316 @default.
- W2034933046 cites W1973727721 @default.
- W2034933046 cites W1978244823 @default.
- W2034933046 cites W1983967760 @default.
- W2034933046 cites W1989192147 @default.
- W2034933046 cites W1996022982 @default.
- W2034933046 cites W2000345291 @default.
- W2034933046 cites W2023967474 @default.
- W2034933046 cites W2024935444 @default.
- W2034933046 cites W2032413422 @default.
- W2034933046 cites W2034566398 @default.
- W2034933046 cites W2038061832 @default.
- W2034933046 cites W2042891401 @default.
- W2034933046 cites W2044046051 @default.
- W2034933046 cites W2059237486 @default.
- W2034933046 cites W2069932138 @default.
- W2034933046 cites W2080157231 @default.
- W2034933046 cites W2086103748 @default.
- W2034933046 cites W2089114174 @default.
- W2034933046 cites W2092681559 @default.
- W2034933046 cites W2099344444 @default.
- W2034933046 cites W2101635345 @default.
- W2034933046 cites W2106488983 @default.
- W2034933046 cites W2113488626 @default.
- W2034933046 cites W2114891033 @default.
- W2034933046 cites W2115271799 @default.
- W2034933046 cites W2118347144 @default.
- W2034933046 cites W2121947440 @default.
- W2034933046 cites W2146036766 @default.
- W2034933046 cites W2157149513 @default.
- W2034933046 cites W2171592532 @default.
- W2034933046 doi "https://doi.org/10.1016/j.isprsjprs.2015.01.010" @default.
- W2034933046 hasPublicationYear "2015" @default.
- W2034933046 type Work @default.
- W2034933046 sameAs 2034933046 @default.
- W2034933046 citedByCount "63" @default.
- W2034933046 countsByYear W20349330462015 @default.
- W2034933046 countsByYear W20349330462016 @default.
- W2034933046 countsByYear W20349330462017 @default.
- W2034933046 countsByYear W20349330462018 @default.
- W2034933046 countsByYear W20349330462019 @default.
- W2034933046 countsByYear W20349330462020 @default.
- W2034933046 countsByYear W20349330462021 @default.
- W2034933046 countsByYear W20349330462022 @default.
- W2034933046 countsByYear W20349330462023 @default.
- W2034933046 crossrefType "journal-article" @default.
- W2034933046 hasAuthorship W2034933046A5006620203 @default.
- W2034933046 hasAuthorship W2034933046A5023786904 @default.
- W2034933046 hasAuthorship W2034933046A5053008757 @default.
- W2034933046 hasAuthorship W2034933046A5070500440 @default.
- W2034933046 hasAuthorship W2034933046A5076060245 @default.
- W2034933046 hasConcept C103278499 @default.
- W2034933046 hasConcept C11413529 @default.
- W2034933046 hasConcept C115961682 @default.
- W2034933046 hasConcept C124101348 @default.
- W2034933046 hasConcept C131979681 @default.
- W2034933046 hasConcept C153180895 @default.
- W2034933046 hasConcept C154945302 @default.
- W2034933046 hasConcept C205649164 @default.
- W2034933046 hasConcept C33923547 @default.
- W2034933046 hasConcept C41008148 @default.
- W2034933046 hasConcept C55439883 @default.
- W2034933046 hasConcept C62649853 @default.
- W2034933046 hasConcept C73555534 @default.
- W2034933046 hasConceptScore W2034933046C103278499 @default.
- W2034933046 hasConceptScore W2034933046C11413529 @default.
- W2034933046 hasConceptScore W2034933046C115961682 @default.
- W2034933046 hasConceptScore W2034933046C124101348 @default.
- W2034933046 hasConceptScore W2034933046C131979681 @default.
- W2034933046 hasConceptScore W2034933046C153180895 @default.
- W2034933046 hasConceptScore W2034933046C154945302 @default.
- W2034933046 hasConceptScore W2034933046C205649164 @default.
- W2034933046 hasConceptScore W2034933046C33923547 @default.
- W2034933046 hasConceptScore W2034933046C41008148 @default.
- W2034933046 hasConceptScore W2034933046C55439883 @default.
- W2034933046 hasConceptScore W2034933046C62649853 @default.
- W2034933046 hasConceptScore W2034933046C73555534 @default.
- W2034933046 hasLocation W20349330461 @default.
- W2034933046 hasOpenAccess W2034933046 @default.
- W2034933046 hasPrimaryLocation W20349330461 @default.
- W2034933046 hasRelatedWork W1457719682 @default.
- W2034933046 hasRelatedWork W1516169988 @default.
- W2034933046 hasRelatedWork W1517743118 @default.
- W2034933046 hasRelatedWork W2024218563 @default.
- W2034933046 hasRelatedWork W2072806201 @default.
- W2034933046 hasRelatedWork W2281090687 @default.
- W2034933046 hasRelatedWork W2762277149 @default.