Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034962364> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2034962364 endingPage "586" @default.
- W2034962364 startingPage "578" @default.
- W2034962364 abstract "Abstract This paper studies hierarchical discrimination and quantification models in order to simultaneously quantify multiple kinds of odors with an improved electronic nose. Such tasks are first regard as multiple discrimination tasks and then as multiple quantification tasks, and implemented by the hierarchical models with the divide-and-conquer strategy. The discrimination models are the common classifiers, including nearest neighbor classifiers, local Euclidean distance templates, local Mahalanobis distance templates, multi-layer perceptrons (MLPs), support vector machines (SVMs) with Gaussian or polynomial kernels. Similarly, the quantification models are multivariate linear regressions, partial least squares regressions, multivariate quadratic regressions, MLPs, SVMs. We developed several types of hierarchical model and compared their capabilities for quantifying 12 kinds of volatile organic compounds with the improved electronic nose. The experimental results show that the hierarchical model composed of multiple single-output MLPs followed by multiple single-output MLPs with local decomposition, virtual balance and local generalization techniques, has advantages over the others in the aspects of time complexity, structure complexity and generalization performance." @default.
- W2034962364 created "2016-06-24" @default.
- W2034962364 creator A5005821883 @default.
- W2034962364 creator A5007052738 @default.
- W2034962364 creator A5011163872 @default.
- W2034962364 date "2012-01-01" @default.
- W2034962364 modified "2023-10-13" @default.
- W2034962364 title "Quantitative analysis of multiple kinds of volatile organic compounds using hierarchical models with an electronic nose" @default.
- W2034962364 cites W1971845710 @default.
- W2034962364 cites W1973045403 @default.
- W2034962364 cites W1973667828 @default.
- W2034962364 cites W1976411285 @default.
- W2034962364 cites W1986290721 @default.
- W2034962364 cites W1986702695 @default.
- W2034962364 cites W1987720748 @default.
- W2034962364 cites W1997082874 @default.
- W2034962364 cites W2006463578 @default.
- W2034962364 cites W2012795714 @default.
- W2034962364 cites W2017686084 @default.
- W2034962364 cites W2018019715 @default.
- W2034962364 cites W2022364679 @default.
- W2034962364 cites W2022392847 @default.
- W2034962364 cites W2025769217 @default.
- W2034962364 cites W2033966705 @default.
- W2034962364 cites W2049864876 @default.
- W2034962364 cites W2058803221 @default.
- W2034962364 cites W2059508081 @default.
- W2034962364 cites W2068377097 @default.
- W2034962364 cites W2068670002 @default.
- W2034962364 cites W2072730661 @default.
- W2034962364 cites W2078464641 @default.
- W2034962364 cites W2081756653 @default.
- W2034962364 cites W2083815439 @default.
- W2034962364 cites W2085653635 @default.
- W2034962364 cites W2088072521 @default.
- W2034962364 cites W2091679096 @default.
- W2034962364 cites W2107261164 @default.
- W2034962364 cites W2127520944 @default.
- W2034962364 cites W2169557470 @default.
- W2034962364 cites W2170593484 @default.
- W2034962364 cites W2172000360 @default.
- W2034962364 doi "https://doi.org/10.1016/j.snb.2011.11.003" @default.
- W2034962364 hasPublicationYear "2012" @default.
- W2034962364 type Work @default.
- W2034962364 sameAs 2034962364 @default.
- W2034962364 citedByCount "20" @default.
- W2034962364 countsByYear W20349623642012 @default.
- W2034962364 countsByYear W20349623642013 @default.
- W2034962364 countsByYear W20349623642014 @default.
- W2034962364 countsByYear W20349623642015 @default.
- W2034962364 countsByYear W20349623642018 @default.
- W2034962364 countsByYear W20349623642020 @default.
- W2034962364 countsByYear W20349623642021 @default.
- W2034962364 countsByYear W20349623642022 @default.
- W2034962364 crossrefType "journal-article" @default.
- W2034962364 hasAuthorship W2034962364A5005821883 @default.
- W2034962364 hasAuthorship W2034962364A5007052738 @default.
- W2034962364 hasAuthorship W2034962364A5011163872 @default.
- W2034962364 hasConcept C153180895 @default.
- W2034962364 hasConcept C154945302 @default.
- W2034962364 hasConcept C185592680 @default.
- W2034962364 hasConcept C186060115 @default.
- W2034962364 hasConcept C23895516 @default.
- W2034962364 hasConcept C41008148 @default.
- W2034962364 hasConcept C43617362 @default.
- W2034962364 hasConcept C86803240 @default.
- W2034962364 hasConceptScore W2034962364C153180895 @default.
- W2034962364 hasConceptScore W2034962364C154945302 @default.
- W2034962364 hasConceptScore W2034962364C185592680 @default.
- W2034962364 hasConceptScore W2034962364C186060115 @default.
- W2034962364 hasConceptScore W2034962364C23895516 @default.
- W2034962364 hasConceptScore W2034962364C41008148 @default.
- W2034962364 hasConceptScore W2034962364C43617362 @default.
- W2034962364 hasConceptScore W2034962364C86803240 @default.
- W2034962364 hasIssue "1" @default.
- W2034962364 hasLocation W20349623641 @default.
- W2034962364 hasOpenAccess W2034962364 @default.
- W2034962364 hasPrimaryLocation W20349623641 @default.
- W2034962364 hasRelatedWork W2033914206 @default.
- W2034962364 hasRelatedWork W2072439432 @default.
- W2034962364 hasRelatedWork W2393009735 @default.
- W2034962364 hasRelatedWork W2528674939 @default.
- W2034962364 hasRelatedWork W2530636277 @default.
- W2034962364 hasRelatedWork W2748952813 @default.
- W2034962364 hasRelatedWork W2788730759 @default.
- W2034962364 hasRelatedWork W2899084033 @default.
- W2034962364 hasRelatedWork W3107474891 @default.
- W2034962364 hasRelatedWork W4220794526 @default.
- W2034962364 hasVolume "161" @default.
- W2034962364 isParatext "false" @default.
- W2034962364 isRetracted "false" @default.
- W2034962364 magId "2034962364" @default.
- W2034962364 workType "article" @default.