Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034963531> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2034963531 endingPage "255" @default.
- W2034963531 startingPage "253" @default.
- W2034963531 abstract "One obvious disadvantage is cost. Commercial 750 MHz instruments are currently being quoted at prices around £2 000 000 while a 500 MHz spectrometer costs around £500 000. A special room with a high ceiling (4.5 m) and, possibly, some stray field protection is also required. These financial implications mean that a 750 MHz instrument is perhaps more likely to form part of a national facility. As mentioned above, another possible disadvantage is the field-dependence of some NMR relaxation properties; protein 1 H resonances do not seem to broaden much with increasing field but the time taken for thermal equilibrium to be re-established after a radiofrequency pulse (longitudinal relaxation) increases. A third potential disadvantage is associated with the fields applied in addition to the main static magnetic field. Modern heteronuclear NMR experiments on macromolecules are very sophisticated and numerous radiofrequency pulses [[5]xExperimental NMR techniques for studies of biopolymers. Bax, A. Curr. Opin. Struct. Biol. 1991; 1: 1030–1035Crossref | Scopus (8)See all References, [8]xAmino-acid type determination in the sequential assignment procedure of uniformly 13 C / 15 N-enriched proteins. Grzesiek, S. and Bax, A. J. Biomolec. NMR. 1993; 3: 185–204PubMedSee all References] and field gradients [9xGradient enhanced spectroscopy. Hurd, R.E. J. Magn. Reson. 1990; 87: 422–428See all References][9] are used to select appropriate NMR signals. The demands on these various additional fields become greater with increasing static field strength. The radiofrequency fields, for example, can become inadequate to cover the entire spectrum of interest uniformly and the increased strength required to cover the spectral range can cause significant heating of the sample.In spite of the potential problems, we believe that the advantages of very high fields are significant. It is clear that 1994 will see the installation and operation of several 750 MHz NMR spectrometers world-wide. Even higher field strengths will soon become technically feasible and magnet manufacturers expect to be able to produce magnetic fields equivalent to proton frequencies of 900 MHz within the next five years. It also seems likely that other aspects of NMR spectrometer technology, such as the development of new sophisticated heteronuclear pulse sequences [5xExperimental NMR techniques for studies of biopolymers. Bax, A. Curr. Opin. Struct. Biol. 1991; 1: 1030–1035Crossref | Scopus (8)See all References][5] will continue to advance. These technical innovations together with the ‘brute force’ application of very high fields will continue. It thus seems likely that the astonishing ability of modern NMR to explore the structure and dynamic properties of proteins in solution will carry on being extended. This will be seen by many to justify the high financial cost of the new very high field instruments." @default.
- W2034963531 created "2016-06-24" @default.
- W2034963531 creator A5055857917 @default.
- W2034963531 creator A5062219892 @default.
- W2034963531 creator A5072316525 @default.
- W2034963531 date "1994-04-01" @default.
- W2034963531 modified "2023-09-23" @default.
- W2034963531 title "NMR at very high fields" @default.
- W2034963531 cites W1564592575 @default.
- W2034963531 cites W1973094625 @default.
- W2034963531 cites W2019005479 @default.
- W2034963531 cites W2022231323 @default.
- W2034963531 cites W2086862822 @default.
- W2034963531 cites W2094081029 @default.
- W2034963531 cites W2131817589 @default.
- W2034963531 doi "https://doi.org/10.1016/s0969-2126(00)00027-7" @default.
- W2034963531 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8087552" @default.
- W2034963531 hasPublicationYear "1994" @default.
- W2034963531 type Work @default.
- W2034963531 sameAs 2034963531 @default.
- W2034963531 citedByCount "12" @default.
- W2034963531 countsByYear W20349635312013 @default.
- W2034963531 crossrefType "journal-article" @default.
- W2034963531 hasAuthorship W2034963531A5055857917 @default.
- W2034963531 hasAuthorship W2034963531A5062219892 @default.
- W2034963531 hasAuthorship W2034963531A5072316525 @default.
- W2034963531 hasBestOaLocation W20349635311 @default.
- W2034963531 hasConcept C185592680 @default.
- W2034963531 hasConcept C70721500 @default.
- W2034963531 hasConcept C8010536 @default.
- W2034963531 hasConcept C86803240 @default.
- W2034963531 hasConceptScore W2034963531C185592680 @default.
- W2034963531 hasConceptScore W2034963531C70721500 @default.
- W2034963531 hasConceptScore W2034963531C8010536 @default.
- W2034963531 hasConceptScore W2034963531C86803240 @default.
- W2034963531 hasIssue "4" @default.
- W2034963531 hasLocation W20349635311 @default.
- W2034963531 hasLocation W20349635312 @default.
- W2034963531 hasOpenAccess W2034963531 @default.
- W2034963531 hasPrimaryLocation W20349635311 @default.
- W2034963531 hasRelatedWork W1531601525 @default.
- W2034963531 hasRelatedWork W2319480705 @default.
- W2034963531 hasRelatedWork W2384464875 @default.
- W2034963531 hasRelatedWork W2398689458 @default.
- W2034963531 hasRelatedWork W2606230654 @default.
- W2034963531 hasRelatedWork W2607424097 @default.
- W2034963531 hasRelatedWork W2748952813 @default.
- W2034963531 hasRelatedWork W2899084033 @default.
- W2034963531 hasRelatedWork W2948807893 @default.
- W2034963531 hasRelatedWork W2778153218 @default.
- W2034963531 hasVolume "2" @default.
- W2034963531 isParatext "false" @default.
- W2034963531 isRetracted "false" @default.
- W2034963531 magId "2034963531" @default.
- W2034963531 workType "article" @default.