Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034965587> ?p ?o ?g. }
- W2034965587 endingPage "1335" @default.
- W2034965587 startingPage "1327" @default.
- W2034965587 abstract "BackgroundReceptors that couple to Gi and Gq often interact synergistically in cells to elicit cytosolic Ca2+ transients that are several-fold higher than the sum of those driven by each receptor alone. Such synergism is commonly assumed to be complex, requiring regulatory interaction between components, multiple pathways, or multiple states of the target protein.ResultsWe show that cellular Gi-Gq synergism derives from direct supra-additive stimulation of phospholipase C-β3 (PLC-β3) by G protein subunits Gβγ and Gαq, the relevant components of the Gi and Gq signaling pathways. No additional pathway or proteins are required. Synergism is quantitatively explained by the classical and simple two-state (inactive↔active) allosteric mechanism. We show generally that synergistic activation of a two-state enzyme reflects enhanced conversion to the active state when both ligands are bound, not merely the enhancement of ligand affinity predicted by positive cooperativity. The two-state mechanism also explains why synergism is unique to PLC-β3 among the four PLC-β isoforms and, in general, why one enzyme may respond synergistically to two activators while another does not. Expression of synergism demands that an enzyme display low basal activity in the absence of ligand and becomes significant only when basal activity is ≤ 0.1% of maximal.ConclusionsSynergism can be explained by a simple and general mechanism, and such a mechanism sets parameters for its occurrence. Any two-state enzyme is predicted to respond synergistically to multiple activating ligands if, but only if, its basal activity is strongly suppressed. Receptors that couple to Gi and Gq often interact synergistically in cells to elicit cytosolic Ca2+ transients that are several-fold higher than the sum of those driven by each receptor alone. Such synergism is commonly assumed to be complex, requiring regulatory interaction between components, multiple pathways, or multiple states of the target protein. We show that cellular Gi-Gq synergism derives from direct supra-additive stimulation of phospholipase C-β3 (PLC-β3) by G protein subunits Gβγ and Gαq, the relevant components of the Gi and Gq signaling pathways. No additional pathway or proteins are required. Synergism is quantitatively explained by the classical and simple two-state (inactive↔active) allosteric mechanism. We show generally that synergistic activation of a two-state enzyme reflects enhanced conversion to the active state when both ligands are bound, not merely the enhancement of ligand affinity predicted by positive cooperativity. The two-state mechanism also explains why synergism is unique to PLC-β3 among the four PLC-β isoforms and, in general, why one enzyme may respond synergistically to two activators while another does not. Expression of synergism demands that an enzyme display low basal activity in the absence of ligand and becomes significant only when basal activity is ≤ 0.1% of maximal. Synergism can be explained by a simple and general mechanism, and such a mechanism sets parameters for its occurrence. Any two-state enzyme is predicted to respond synergistically to multiple activating ligands if, but only if, its basal activity is strongly suppressed." @default.
- W2034965587 created "2016-06-24" @default.
- W2034965587 creator A5036589276 @default.
- W2034965587 creator A5067613853 @default.
- W2034965587 creator A5067710604 @default.
- W2034965587 creator A5077223826 @default.
- W2034965587 creator A5087388847 @default.
- W2034965587 date "2010-08-01" @default.
- W2034965587 modified "2023-10-18" @default.
- W2034965587 title "Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector" @default.
- W2034965587 cites W1516430041 @default.
- W2034965587 cites W1518153787 @default.
- W2034965587 cites W1606090338 @default.
- W2034965587 cites W1663699868 @default.
- W2034965587 cites W1669965315 @default.
- W2034965587 cites W1836419114 @default.
- W2034965587 cites W1964628210 @default.
- W2034965587 cites W1978221294 @default.
- W2034965587 cites W1986775528 @default.
- W2034965587 cites W1996036897 @default.
- W2034965587 cites W1996741195 @default.
- W2034965587 cites W1998442807 @default.
- W2034965587 cites W2002944804 @default.
- W2034965587 cites W2005877930 @default.
- W2034965587 cites W2010455912 @default.
- W2034965587 cites W2011993152 @default.
- W2034965587 cites W2019072640 @default.
- W2034965587 cites W2034492556 @default.
- W2034965587 cites W2040915620 @default.
- W2034965587 cites W2061027645 @default.
- W2034965587 cites W2064740654 @default.
- W2034965587 cites W2069547389 @default.
- W2034965587 cites W2070153703 @default.
- W2034965587 cites W2081346423 @default.
- W2034965587 cites W2086524338 @default.
- W2034965587 cites W2086569395 @default.
- W2034965587 cites W2088345550 @default.
- W2034965587 cites W2094841666 @default.
- W2034965587 cites W2095393268 @default.
- W2034965587 cites W2096549360 @default.
- W2034965587 cites W2100755177 @default.
- W2034965587 cites W2109385815 @default.
- W2034965587 cites W2111766617 @default.
- W2034965587 cites W2118656164 @default.
- W2034965587 cites W2120297430 @default.
- W2034965587 cites W2125289728 @default.
- W2034965587 cites W2126463310 @default.
- W2034965587 cites W2128747776 @default.
- W2034965587 cites W2140956805 @default.
- W2034965587 cites W2168808956 @default.
- W2034965587 cites W2279920386 @default.
- W2034965587 cites W2341616590 @default.
- W2034965587 cites W4239945442 @default.
- W2034965587 doi "https://doi.org/10.1016/j.cub.2010.06.013" @default.
- W2034965587 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2918712" @default.
- W2034965587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20579885" @default.
- W2034965587 hasPublicationYear "2010" @default.
- W2034965587 type Work @default.
- W2034965587 sameAs 2034965587 @default.
- W2034965587 citedByCount "73" @default.
- W2034965587 countsByYear W20349655872012 @default.
- W2034965587 countsByYear W20349655872013 @default.
- W2034965587 countsByYear W20349655872014 @default.
- W2034965587 countsByYear W20349655872015 @default.
- W2034965587 countsByYear W20349655872016 @default.
- W2034965587 countsByYear W20349655872017 @default.
- W2034965587 countsByYear W20349655872018 @default.
- W2034965587 countsByYear W20349655872019 @default.
- W2034965587 countsByYear W20349655872020 @default.
- W2034965587 countsByYear W20349655872021 @default.
- W2034965587 countsByYear W20349655872022 @default.
- W2034965587 countsByYear W20349655872023 @default.
- W2034965587 crossrefType "journal-article" @default.
- W2034965587 hasAuthorship W2034965587A5036589276 @default.
- W2034965587 hasAuthorship W2034965587A5067613853 @default.
- W2034965587 hasAuthorship W2034965587A5067710604 @default.
- W2034965587 hasAuthorship W2034965587A5077223826 @default.
- W2034965587 hasAuthorship W2034965587A5087388847 @default.
- W2034965587 hasBestOaLocation W20349655871 @default.
- W2034965587 hasConcept C104317684 @default.
- W2034965587 hasConcept C116569031 @default.
- W2034965587 hasConcept C125209161 @default.
- W2034965587 hasConcept C12554922 @default.
- W2034965587 hasConcept C12927208 @default.
- W2034965587 hasConcept C166014724 @default.
- W2034965587 hasConcept C166342909 @default.
- W2034965587 hasConcept C170493617 @default.
- W2034965587 hasConcept C181199279 @default.
- W2034965587 hasConcept C2778597717 @default.
- W2034965587 hasConcept C53345823 @default.
- W2034965587 hasConcept C55493867 @default.
- W2034965587 hasConcept C66135807 @default.
- W2034965587 hasConcept C80631254 @default.
- W2034965587 hasConcept C86803240 @default.
- W2034965587 hasConcept C95444343 @default.
- W2034965587 hasConcept C98539663 @default.
- W2034965587 hasConceptScore W2034965587C104317684 @default.
- W2034965587 hasConceptScore W2034965587C116569031 @default.