Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034976519> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2034976519 endingPage "57" @default.
- W2034976519 startingPage "41" @default.
- W2034976519 abstract "A non-negative least squares classifier is proposed in this paper for classifying under-complete data. The idea is that unknown samples can be approximated by sparse non-negative linear combinations of few training samples. Based on sparse coefficient vectors representing the training data, a sparse interpreter can then be used to predict the class label. We have devised new sparse methods which can learn data containing missing value, which can be trained on over-complete data, and which also apply to tensor data and to multi-class data. Permutation test shows that our approach requires a small number of training samples to obtain significant accuracy. Statistical comparisons on various data shows that our methods perform as well as support vector machines while being faster. Our approach is very robust to missing values and noise. We also show that with appropriate kernel functions, our methods perform very well on three-dimensional tensor data and run fairly fast." @default.
- W2034976519 created "2016-06-24" @default.
- W2034976519 creator A5033510515 @default.
- W2034976519 creator A5070302649 @default.
- W2034976519 date "2013-10-01" @default.
- W2034976519 modified "2023-10-13" @default.
- W2034976519 title "Classification approach based on non-negative least squares" @default.
- W2034976519 cites W1689445748 @default.
- W2034976519 cites W1727290854 @default.
- W2034976519 cites W1902027874 @default.
- W2034976519 cites W1976709621 @default.
- W2034976519 cites W2024165284 @default.
- W2034976519 cites W2028781966 @default.
- W2034976519 cites W2032223996 @default.
- W2034976519 cites W2040007196 @default.
- W2034976519 cites W2063145959 @default.
- W2034976519 cites W2069809382 @default.
- W2034976519 cites W2069959554 @default.
- W2034976519 cites W2078204800 @default.
- W2034976519 cites W2087684630 @default.
- W2034976519 cites W2092095117 @default.
- W2034976519 cites W2096863518 @default.
- W2034976519 cites W2097486709 @default.
- W2034976519 cites W2098098075 @default.
- W2034976519 cites W2106789617 @default.
- W2034976519 cites W2109363337 @default.
- W2034976519 cites W2113577207 @default.
- W2034976519 cites W2128985829 @default.
- W2034976519 cites W2129812935 @default.
- W2034976519 cites W2137009853 @default.
- W2034976519 cites W2138218344 @default.
- W2034976519 cites W2153663612 @default.
- W2034976519 cites W2154639585 @default.
- W2034976519 cites W2162262128 @default.
- W2034976519 cites W2168103112 @default.
- W2034976519 cites W2171142557 @default.
- W2034976519 cites W2172300860 @default.
- W2034976519 cites W3022380717 @default.
- W2034976519 cites W4236137412 @default.
- W2034976519 cites W4246697467 @default.
- W2034976519 cites W79536630 @default.
- W2034976519 doi "https://doi.org/10.1016/j.neucom.2013.02.012" @default.
- W2034976519 hasPublicationYear "2013" @default.
- W2034976519 type Work @default.
- W2034976519 sameAs 2034976519 @default.
- W2034976519 citedByCount "35" @default.
- W2034976519 countsByYear W20349765192013 @default.
- W2034976519 countsByYear W20349765192014 @default.
- W2034976519 countsByYear W20349765192015 @default.
- W2034976519 countsByYear W20349765192016 @default.
- W2034976519 countsByYear W20349765192017 @default.
- W2034976519 countsByYear W20349765192018 @default.
- W2034976519 countsByYear W20349765192019 @default.
- W2034976519 countsByYear W20349765192020 @default.
- W2034976519 countsByYear W20349765192021 @default.
- W2034976519 countsByYear W20349765192022 @default.
- W2034976519 crossrefType "journal-article" @default.
- W2034976519 hasAuthorship W2034976519A5033510515 @default.
- W2034976519 hasAuthorship W2034976519A5070302649 @default.
- W2034976519 hasConcept C11413529 @default.
- W2034976519 hasConcept C119857082 @default.
- W2034976519 hasConcept C124101348 @default.
- W2034976519 hasConcept C150921843 @default.
- W2034976519 hasConcept C153180895 @default.
- W2034976519 hasConcept C154945302 @default.
- W2034976519 hasConcept C2777212361 @default.
- W2034976519 hasConcept C33923547 @default.
- W2034976519 hasConcept C41008148 @default.
- W2034976519 hasConcept C9357733 @default.
- W2034976519 hasConceptScore W2034976519C11413529 @default.
- W2034976519 hasConceptScore W2034976519C119857082 @default.
- W2034976519 hasConceptScore W2034976519C124101348 @default.
- W2034976519 hasConceptScore W2034976519C150921843 @default.
- W2034976519 hasConceptScore W2034976519C153180895 @default.
- W2034976519 hasConceptScore W2034976519C154945302 @default.
- W2034976519 hasConceptScore W2034976519C2777212361 @default.
- W2034976519 hasConceptScore W2034976519C33923547 @default.
- W2034976519 hasConceptScore W2034976519C41008148 @default.
- W2034976519 hasConceptScore W2034976519C9357733 @default.
- W2034976519 hasLocation W20349765191 @default.
- W2034976519 hasOpenAccess W2034976519 @default.
- W2034976519 hasPrimaryLocation W20349765191 @default.
- W2034976519 hasRelatedWork W2146615705 @default.
- W2034976519 hasRelatedWork W2376469759 @default.
- W2034976519 hasRelatedWork W2774028126 @default.
- W2034976519 hasRelatedWork W2961085424 @default.
- W2034976519 hasRelatedWork W4280583325 @default.
- W2034976519 hasRelatedWork W4306674287 @default.
- W2034976519 hasRelatedWork W4319983935 @default.
- W2034976519 hasRelatedWork W4322743207 @default.
- W2034976519 hasRelatedWork W4362564695 @default.
- W2034976519 hasRelatedWork W4224009465 @default.
- W2034976519 hasVolume "118" @default.
- W2034976519 isParatext "false" @default.
- W2034976519 isRetracted "false" @default.
- W2034976519 magId "2034976519" @default.
- W2034976519 workType "article" @default.