Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034992378> ?p ?o ?g. }
- W2034992378 endingPage "1146" @default.
- W2034992378 startingPage "1138" @default.
- W2034992378 abstract "Gleason patterns of prostate cancer histopathology, characterized primarily by morphological and architectural attributes of histological structures (glands and nuclei), have been found to be highly correlated with disease aggressiveness and patient outcome. Gleason patterns 4 and 5 are highly correlated with more aggressive disease and poorer patient outcome, while Gleason patterns 1–3 tend to reflect more favorable patient outcome. Because Gleason grading is done manually by a pathologist visually examining glass (or digital) slides subtle morphologic and architectural differences of histological attributes, in addition to other factors, may result in grading errors and hence cause high inter-observer variability. Recently some researchers have proposed computerized decision support systems to automatically grade Gleason patterns by using features pertaining to nuclear architecture, gland morphology, as well as tissue texture. Automated characterization of gland morphology has been shown to distinguish between intermediate Gleason patterns 3 and 4 with high accuracy. Manifold learning (ML) schemes attempt to generate a low dimensional manifold representation of a higher dimensional feature space while simultaneously preserving nonlinear relationships between object instances. Classification can then be performed in the low dimensional space with high accuracy. However ML is sensitive to the samples contained in the dataset; changes in the dataset may alter the manifold structure. In this paper we present a manifold regularization technique to constrain the low dimensional manifold to a specific range of possible manifold shapes, the range being determined via a statistical shape model of manifolds (SSMM). In this work we demonstrate applications of the SSMM in (1) identifying samples on the manifold which contain noise, defined as those samples which deviate from the SSMM, and (2) accurate out-of-sample extrapolation (OSE) of newly acquired samples onto a manifold constrained by the SSMM. We demonstrate these applications of the SSMM in the context of distinguish between Gleason patterns 3 and 4 using glandular morphologic features in a prostate histopathology dataset of 58 patient studies. Identifying and eliminating noisy samples from the manifold via the SSMM results in a statistically significant improvement in area under the receiver operator characteristic curve (AUC), 0.832 ± 0.048 with removal of noisy samples compared to a AUC of 0.779 ± 0.075 without removal of samples. The use of the SSMM for OSE of newly acquired glands also shows statistically significant improvement in AUC, 0.834 ± 0.051 with the SSMM compared to 0.779 ± 0.054 without the SSMM. Similar results were observed for the synthetic Swiss Roll and Helix datasets." @default.
- W2034992378 created "2016-06-24" @default.
- W2034992378 creator A5003265996 @default.
- W2034992378 creator A5027642699 @default.
- W2034992378 date "2013-09-01" @default.
- W2034992378 modified "2023-09-23" @default.
- W2034992378 title "Statistical shape model for manifold regularization: Gleason grading of prostate histology" @default.
- W2034992378 cites W1554643662 @default.
- W2034992378 cites W1967307149 @default.
- W2034992378 cites W1975103383 @default.
- W2034992378 cites W1977551372 @default.
- W2034992378 cites W1987971958 @default.
- W2034992378 cites W1998118468 @default.
- W2034992378 cites W2001141328 @default.
- W2034992378 cites W2022025102 @default.
- W2034992378 cites W2026526178 @default.
- W2034992378 cites W2035809577 @default.
- W2034992378 cites W2038952578 @default.
- W2034992378 cites W2039332006 @default.
- W2034992378 cites W2043028407 @default.
- W2034992378 cites W2049365101 @default.
- W2034992378 cites W2053186076 @default.
- W2034992378 cites W2071844402 @default.
- W2034992378 cites W2083043726 @default.
- W2034992378 cites W2087222240 @default.
- W2034992378 cites W2097308346 @default.
- W2034992378 cites W2100221277 @default.
- W2034992378 cites W2102445822 @default.
- W2034992378 cites W2116079122 @default.
- W2034992378 cites W2116810533 @default.
- W2034992378 cites W2121947440 @default.
- W2034992378 cites W2139280638 @default.
- W2034992378 cites W2146655125 @default.
- W2034992378 cites W2156398782 @default.
- W2034992378 cites W2156549595 @default.
- W2034992378 cites W2160633263 @default.
- W2034992378 cites W2167277498 @default.
- W2034992378 cites W4212883601 @default.
- W2034992378 cites W4235332110 @default.
- W2034992378 doi "https://doi.org/10.1016/j.cviu.2012.11.011" @default.
- W2034992378 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3718190" @default.
- W2034992378 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23888106" @default.
- W2034992378 hasPublicationYear "2013" @default.
- W2034992378 type Work @default.
- W2034992378 sameAs 2034992378 @default.
- W2034992378 citedByCount "31" @default.
- W2034992378 countsByYear W20349923782014 @default.
- W2034992378 countsByYear W20349923782015 @default.
- W2034992378 countsByYear W20349923782016 @default.
- W2034992378 countsByYear W20349923782017 @default.
- W2034992378 countsByYear W20349923782018 @default.
- W2034992378 countsByYear W20349923782019 @default.
- W2034992378 countsByYear W20349923782020 @default.
- W2034992378 countsByYear W20349923782021 @default.
- W2034992378 crossrefType "journal-article" @default.
- W2034992378 hasAuthorship W2034992378A5003265996 @default.
- W2034992378 hasAuthorship W2034992378A5027642699 @default.
- W2034992378 hasBestOaLocation W20349923782 @default.
- W2034992378 hasConcept C121608353 @default.
- W2034992378 hasConcept C126322002 @default.
- W2034992378 hasConcept C127413603 @default.
- W2034992378 hasConcept C151876577 @default.
- W2034992378 hasConcept C153180895 @default.
- W2034992378 hasConcept C154945302 @default.
- W2034992378 hasConcept C18903297 @default.
- W2034992378 hasConcept C2776235491 @default.
- W2034992378 hasConcept C2777286243 @default.
- W2034992378 hasConcept C2780192828 @default.
- W2034992378 hasConcept C33923547 @default.
- W2034992378 hasConcept C41008148 @default.
- W2034992378 hasConcept C529865628 @default.
- W2034992378 hasConcept C70518039 @default.
- W2034992378 hasConcept C71924100 @default.
- W2034992378 hasConcept C78519656 @default.
- W2034992378 hasConcept C86803240 @default.
- W2034992378 hasConceptScore W2034992378C121608353 @default.
- W2034992378 hasConceptScore W2034992378C126322002 @default.
- W2034992378 hasConceptScore W2034992378C127413603 @default.
- W2034992378 hasConceptScore W2034992378C151876577 @default.
- W2034992378 hasConceptScore W2034992378C153180895 @default.
- W2034992378 hasConceptScore W2034992378C154945302 @default.
- W2034992378 hasConceptScore W2034992378C18903297 @default.
- W2034992378 hasConceptScore W2034992378C2776235491 @default.
- W2034992378 hasConceptScore W2034992378C2777286243 @default.
- W2034992378 hasConceptScore W2034992378C2780192828 @default.
- W2034992378 hasConceptScore W2034992378C33923547 @default.
- W2034992378 hasConceptScore W2034992378C41008148 @default.
- W2034992378 hasConceptScore W2034992378C529865628 @default.
- W2034992378 hasConceptScore W2034992378C70518039 @default.
- W2034992378 hasConceptScore W2034992378C71924100 @default.
- W2034992378 hasConceptScore W2034992378C78519656 @default.
- W2034992378 hasConceptScore W2034992378C86803240 @default.
- W2034992378 hasIssue "9" @default.
- W2034992378 hasLocation W20349923781 @default.
- W2034992378 hasLocation W20349923782 @default.
- W2034992378 hasLocation W20349923783 @default.
- W2034992378 hasLocation W20349923784 @default.
- W2034992378 hasOpenAccess W2034992378 @default.