Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035108753> ?p ?o ?g. }
- W2035108753 endingPage "28" @default.
- W2035108753 startingPage "28" @default.
- W2035108753 abstract "<b>Background:</b> Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. <b>Methods:</b> Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. <b>Results:</b> Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. <b>Conclusion:</b> These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries." @default.
- W2035108753 created "2016-06-24" @default.
- W2035108753 creator A5002848732 @default.
- W2035108753 creator A5007203915 @default.
- W2035108753 creator A5010413374 @default.
- W2035108753 creator A5056786907 @default.
- W2035108753 creator A5065554744 @default.
- W2035108753 creator A5066977573 @default.
- W2035108753 date "2014-01-01" @default.
- W2035108753 modified "2023-10-01" @default.
- W2035108753 title "Automated quantification of aligned collagen for human breast carcinoma prognosis" @default.
- W2035108753 cites W1551461559 @default.
- W2035108753 cites W1644299043 @default.
- W2035108753 cites W1979968811 @default.
- W2035108753 cites W1982164013 @default.
- W2035108753 cites W1991827918 @default.
- W2035108753 cites W1995388182 @default.
- W2035108753 cites W1996453069 @default.
- W2035108753 cites W1996841581 @default.
- W2035108753 cites W2000853162 @default.
- W2035108753 cites W2001391564 @default.
- W2035108753 cites W2002533063 @default.
- W2035108753 cites W2002733443 @default.
- W2035108753 cites W2005304850 @default.
- W2035108753 cites W2006196877 @default.
- W2035108753 cites W2006587375 @default.
- W2035108753 cites W2011380505 @default.
- W2035108753 cites W2014192493 @default.
- W2035108753 cites W2022544791 @default.
- W2035108753 cites W2023172009 @default.
- W2035108753 cites W2027345413 @default.
- W2035108753 cites W2027556986 @default.
- W2035108753 cites W2031502025 @default.
- W2035108753 cites W2039670041 @default.
- W2035108753 cites W2041779667 @default.
- W2035108753 cites W2048593832 @default.
- W2035108753 cites W2053159655 @default.
- W2035108753 cites W2055502077 @default.
- W2035108753 cites W2058265485 @default.
- W2035108753 cites W2059468361 @default.
- W2035108753 cites W2061273916 @default.
- W2035108753 cites W2068819405 @default.
- W2035108753 cites W2075717479 @default.
- W2035108753 cites W2076937190 @default.
- W2035108753 cites W2079130919 @default.
- W2035108753 cites W2086335524 @default.
- W2035108753 cites W2091662955 @default.
- W2035108753 cites W2101728107 @default.
- W2035108753 cites W2104479723 @default.
- W2035108753 cites W2109063533 @default.
- W2035108753 cites W2113473790 @default.
- W2035108753 cites W2115528090 @default.
- W2035108753 cites W2136737404 @default.
- W2035108753 cites W2141803075 @default.
- W2035108753 cites W2145675587 @default.
- W2035108753 cites W2147153911 @default.
- W2035108753 cites W2147597554 @default.
- W2035108753 cites W2151538808 @default.
- W2035108753 cites W2151939779 @default.
- W2035108753 cites W2154851379 @default.
- W2035108753 cites W2158456701 @default.
- W2035108753 cites W2160408484 @default.
- W2035108753 cites W2163060364 @default.
- W2035108753 cites W2166572577 @default.
- W2035108753 cites W2167279371 @default.
- W2035108753 cites W2167460696 @default.
- W2035108753 cites W2171330332 @default.
- W2035108753 cites W2231000545 @default.
- W2035108753 cites W2911964244 @default.
- W2035108753 cites W4293171766 @default.
- W2035108753 cites W2109167698 @default.
- W2035108753 doi "https://doi.org/10.4103/2153-3539.139707" @default.
- W2035108753 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4168643" @default.
- W2035108753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25250186" @default.
- W2035108753 hasPublicationYear "2014" @default.
- W2035108753 type Work @default.
- W2035108753 sameAs 2035108753 @default.
- W2035108753 citedByCount "169" @default.
- W2035108753 countsByYear W20351087532015 @default.
- W2035108753 countsByYear W20351087532016 @default.
- W2035108753 countsByYear W20351087532017 @default.
- W2035108753 countsByYear W20351087532018 @default.
- W2035108753 countsByYear W20351087532019 @default.
- W2035108753 countsByYear W20351087532020 @default.
- W2035108753 countsByYear W20351087532021 @default.
- W2035108753 countsByYear W20351087532022 @default.
- W2035108753 countsByYear W20351087532023 @default.
- W2035108753 crossrefType "journal-article" @default.
- W2035108753 hasAuthorship W2035108753A5002848732 @default.
- W2035108753 hasAuthorship W2035108753A5007203915 @default.
- W2035108753 hasAuthorship W2035108753A5010413374 @default.
- W2035108753 hasAuthorship W2035108753A5056786907 @default.
- W2035108753 hasAuthorship W2035108753A5065554744 @default.
- W2035108753 hasAuthorship W2035108753A5066977573 @default.
- W2035108753 hasBestOaLocation W20351087531 @default.
- W2035108753 hasConcept C121608353 @default.
- W2035108753 hasConcept C126322002 @default.
- W2035108753 hasConcept C126838900 @default.