Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035135033> ?p ?o ?g. }
- W2035135033 endingPage "13780" @default.
- W2035135033 startingPage "13769" @default.
- W2035135033 abstract "The receptor binding domain (RBD) of the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major target of protective immunity in vivo. Although a large number of neutralizing antibodies (nAbs) have been developed, it remains unclear if a single RBD-targeting nAb or two in combination can prevent neutralization escape and, if not, attenuate viral virulence in vivo. In this study, we used a large panel of human nAbs against an epitope that overlaps the interface between the RBD and its receptor, angiotensin-converting enzyme 2 (ACE2), to assess their cross-neutralization activities against a panel of human and zoonotic SARS-CoVs and neutralization escape mutants. We also investigated the neutralization escape profiles of these nAbs and evaluated their effects on receptor binding and virus fitness in vitro and in mice. We found that some nAbs had great potency and breadth in neutralizing multiple viral strains, including neutralization escape viruses derived from other nAbs; however, no single nAb or combination of two blocked neutralization escape. Interestingly, in mice the neutralization escape mutant viruses showed either attenuation (Urbani background) or increased virulence (GD03 background) consistent with the different binding affinities between their RBDs and the mouse ACE2. We conclude that using either single nAbs or dual nAb combinations to target a SARS-CoV RBD epitope that shows plasticity may have limitations for preventing neutralization escape during in vivo immunotherapy. However, RBD-directed nAbs may be useful for providing broad neutralization and prevention of escape variants when combined with other nAbs that target a second conserved epitope with less plasticity and more structural constraint.The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has resulted in severe human respiratory disease with high death rates. Their zoonotic origins highlight the likelihood of reemergence or further evolution into novel human coronavirus pathogens. Broadly neutralizing antibodies (nAbs) that prevent infection of related viruses represent an important immunostrategy for combating coronavirus infections; however, for this strategy to succeed, it is essential to uncover nAb-mediated escape pathways and to pioneer strategies that prevent escape. Here, we used SARS-CoV as a research model and examined the escape pathways of broad nAbs that target the receptor binding domain (RBD) of the virus. We found that neither single nAbs nor two nAbs in combination blocked escape. Our results suggest that targeting conserved regions with less plasticity and more structural constraint rather than the SARS-CoV RBD-like region(s) should have broader utility for antibody-based immunotherapy." @default.
- W2035135033 created "2016-06-24" @default.
- W2035135033 creator A5000780125 @default.
- W2035135033 creator A5000944816 @default.
- W2035135033 creator A5007919640 @default.
- W2035135033 creator A5012738713 @default.
- W2035135033 creator A5018445875 @default.
- W2035135033 creator A5033759527 @default.
- W2035135033 creator A5060837328 @default.
- W2035135033 date "2014-12-01" @default.
- W2035135033 modified "2023-09-30" @default.
- W2035135033 title "Effects of Human Anti-Spike Protein Receptor Binding Domain Antibodies on Severe Acute Respiratory Syndrome Coronavirus Neutralization Escape and Fitness" @default.
- W2035135033 cites W127928206 @default.
- W2035135033 cites W1811783050 @default.
- W2035135033 cites W1963580683 @default.
- W2035135033 cites W1966238900 @default.
- W2035135033 cites W1966459725 @default.
- W2035135033 cites W1966856638 @default.
- W2035135033 cites W1970636382 @default.
- W2035135033 cites W1975490802 @default.
- W2035135033 cites W1982533785 @default.
- W2035135033 cites W1993577573 @default.
- W2035135033 cites W1997505944 @default.
- W2035135033 cites W1998383538 @default.
- W2035135033 cites W1998501626 @default.
- W2035135033 cites W2003555676 @default.
- W2035135033 cites W2008811126 @default.
- W2035135033 cites W2012505332 @default.
- W2035135033 cites W2025977980 @default.
- W2035135033 cites W2036173135 @default.
- W2035135033 cites W2038918691 @default.
- W2035135033 cites W2054912340 @default.
- W2035135033 cites W2058780476 @default.
- W2035135033 cites W2061828573 @default.
- W2035135033 cites W2064822333 @default.
- W2035135033 cites W2074007523 @default.
- W2035135033 cites W2074326025 @default.
- W2035135033 cites W2094789201 @default.
- W2035135033 cites W2096527227 @default.
- W2035135033 cites W2098695079 @default.
- W2035135033 cites W2100227317 @default.
- W2035135033 cites W2103167703 @default.
- W2035135033 cites W2103503670 @default.
- W2035135033 cites W2104548316 @default.
- W2035135033 cites W2105314995 @default.
- W2035135033 cites W2115137014 @default.
- W2035135033 cites W2116586125 @default.
- W2035135033 cites W2122576818 @default.
- W2035135033 cites W2123787670 @default.
- W2035135033 cites W2129100200 @default.
- W2035135033 cites W2129678810 @default.
- W2035135033 cites W2137888434 @default.
- W2035135033 cites W2139509513 @default.
- W2035135033 cites W2140338292 @default.
- W2035135033 cites W2141968121 @default.
- W2035135033 cites W2144073791 @default.
- W2035135033 cites W2145151912 @default.
- W2035135033 cites W2145317919 @default.
- W2035135033 cites W2146476111 @default.
- W2035135033 cites W2146900701 @default.
- W2035135033 cites W2150633245 @default.
- W2035135033 cites W2154026160 @default.
- W2035135033 cites W2155387067 @default.
- W2035135033 cites W2164807254 @default.
- W2035135033 cites W2166867592 @default.
- W2035135033 cites W2169198329 @default.
- W2035135033 cites W60759546 @default.
- W2035135033 doi "https://doi.org/10.1128/jvi.02232-14" @default.
- W2035135033 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4248992" @default.
- W2035135033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25231316" @default.
- W2035135033 hasPublicationYear "2014" @default.
- W2035135033 type Work @default.
- W2035135033 sameAs 2035135033 @default.
- W2035135033 citedByCount "70" @default.
- W2035135033 countsByYear W20351350332015 @default.
- W2035135033 countsByYear W20351350332016 @default.
- W2035135033 countsByYear W20351350332017 @default.
- W2035135033 countsByYear W20351350332018 @default.
- W2035135033 countsByYear W20351350332019 @default.
- W2035135033 countsByYear W20351350332020 @default.
- W2035135033 countsByYear W20351350332021 @default.
- W2035135033 countsByYear W20351350332022 @default.
- W2035135033 countsByYear W20351350332023 @default.
- W2035135033 crossrefType "journal-article" @default.
- W2035135033 hasAuthorship W2035135033A5000780125 @default.
- W2035135033 hasAuthorship W2035135033A5000944816 @default.
- W2035135033 hasAuthorship W2035135033A5007919640 @default.
- W2035135033 hasAuthorship W2035135033A5012738713 @default.
- W2035135033 hasAuthorship W2035135033A5018445875 @default.
- W2035135033 hasAuthorship W2035135033A5033759527 @default.
- W2035135033 hasAuthorship W2035135033A5060837328 @default.
- W2035135033 hasBestOaLocation W20351350332 @default.
- W2035135033 hasConcept C104317684 @default.
- W2035135033 hasConcept C108625454 @default.
- W2035135033 hasConcept C140704245 @default.
- W2035135033 hasConcept C14086860 @default.
- W2035135033 hasConcept C142724271 @default.
- W2035135033 hasConcept C143065580 @default.