Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035193279> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2035193279 abstract "Correct mass diagnosis in mammogram can reduce the unnecessary biopsy without increasing false negatives. In this paper, we investigated the usage of random forest classifier for the classification of masses with geometry and texture features. Before extracting features, the mass regions need to be extracted. Based on the initial contour guided by radiologist, level set segmentation is used to deform the contour and achieves the final segmentation. The proposed level set method integrated both region information and boundary information, and with a level regularization term, it can achieve accurate segmentation. Modified Hu moments were used for shape characteristics, and GLCM (Gray Level Co-occurrence Matrix) features are used for texture characteristics. Random forest, a recently proposed ensemble learning method, for the first time, is investigated for the mass classification, and is compared with SVM (Support Vector Machine). Mammography images from DDSM were used for experiment. The new method based on the level set segmentation and the features achieved a A z value of 0.86 with SVM and 0.83 with random forest. The experimental result shows that random forest is a promising method for the diagnosis of masses." @default.
- W2035193279 created "2016-06-24" @default.
- W2035193279 creator A5000177737 @default.
- W2035193279 creator A5056674934 @default.
- W2035193279 creator A5057216674 @default.
- W2035193279 creator A5063851177 @default.
- W2035193279 date "2011-10-01" @default.
- W2035193279 modified "2023-09-25" @default.
- W2035193279 title "An investigate of mass diagnosis in mammogram with random forest" @default.
- W2035193279 cites W1594031697 @default.
- W2035193279 cites W1605688901 @default.
- W2035193279 cites W187131224 @default.
- W2035193279 cites W1972677626 @default.
- W2035193279 cites W1986287200 @default.
- W2035193279 cites W2017074421 @default.
- W2035193279 cites W2025383700 @default.
- W2035193279 cites W2031264859 @default.
- W2035193279 cites W2044465660 @default.
- W2035193279 cites W2054470248 @default.
- W2035193279 cites W2074996049 @default.
- W2035193279 cites W2092886150 @default.
- W2035193279 cites W2101711129 @default.
- W2035193279 cites W2101771332 @default.
- W2035193279 cites W2116040950 @default.
- W2035193279 cites W2131765857 @default.
- W2035193279 cites W2138309086 @default.
- W2035193279 cites W2139478903 @default.
- W2035193279 cites W2153635508 @default.
- W2035193279 cites W2159498975 @default.
- W2035193279 cites W2911964244 @default.
- W2035193279 doi "https://doi.org/10.1109/iwaci.2011.6160086" @default.
- W2035193279 hasPublicationYear "2011" @default.
- W2035193279 type Work @default.
- W2035193279 sameAs 2035193279 @default.
- W2035193279 citedByCount "6" @default.
- W2035193279 countsByYear W20351932792012 @default.
- W2035193279 countsByYear W20351932792013 @default.
- W2035193279 countsByYear W20351932792014 @default.
- W2035193279 countsByYear W20351932792015 @default.
- W2035193279 countsByYear W20351932792017 @default.
- W2035193279 crossrefType "proceedings-article" @default.
- W2035193279 hasAuthorship W2035193279A5000177737 @default.
- W2035193279 hasAuthorship W2035193279A5056674934 @default.
- W2035193279 hasAuthorship W2035193279A5057216674 @default.
- W2035193279 hasAuthorship W2035193279A5063851177 @default.
- W2035193279 hasConcept C112353826 @default.
- W2035193279 hasConcept C12267149 @default.
- W2035193279 hasConcept C124504099 @default.
- W2035193279 hasConcept C153180895 @default.
- W2035193279 hasConcept C154945302 @default.
- W2035193279 hasConcept C169258074 @default.
- W2035193279 hasConcept C31972630 @default.
- W2035193279 hasConcept C41008148 @default.
- W2035193279 hasConcept C89600930 @default.
- W2035193279 hasConcept C95623464 @default.
- W2035193279 hasConceptScore W2035193279C112353826 @default.
- W2035193279 hasConceptScore W2035193279C12267149 @default.
- W2035193279 hasConceptScore W2035193279C124504099 @default.
- W2035193279 hasConceptScore W2035193279C153180895 @default.
- W2035193279 hasConceptScore W2035193279C154945302 @default.
- W2035193279 hasConceptScore W2035193279C169258074 @default.
- W2035193279 hasConceptScore W2035193279C31972630 @default.
- W2035193279 hasConceptScore W2035193279C41008148 @default.
- W2035193279 hasConceptScore W2035193279C89600930 @default.
- W2035193279 hasConceptScore W2035193279C95623464 @default.
- W2035193279 hasLocation W20351932791 @default.
- W2035193279 hasOpenAccess W2035193279 @default.
- W2035193279 hasPrimaryLocation W20351932791 @default.
- W2035193279 hasRelatedWork W187131224 @default.
- W2035193279 hasRelatedWork W2026268783 @default.
- W2035193279 hasRelatedWork W2077981803 @default.
- W2035193279 hasRelatedWork W2118043379 @default.
- W2035193279 hasRelatedWork W2131765857 @default.
- W2035193279 hasRelatedWork W2321077867 @default.
- W2035193279 hasRelatedWork W2409002119 @default.
- W2035193279 hasRelatedWork W2541336541 @default.
- W2035193279 hasRelatedWork W2547468946 @default.
- W2035193279 hasRelatedWork W2777755515 @default.
- W2035193279 hasRelatedWork W2787295224 @default.
- W2035193279 hasRelatedWork W2902427244 @default.
- W2035193279 hasRelatedWork W303976702 @default.
- W2035193279 hasRelatedWork W3098287295 @default.
- W2035193279 hasRelatedWork W3110178639 @default.
- W2035193279 hasRelatedWork W3126652083 @default.
- W2035193279 hasRelatedWork W3139447780 @default.
- W2035193279 hasRelatedWork W3174164270 @default.
- W2035193279 hasRelatedWork W933916840 @default.
- W2035193279 hasRelatedWork W2553658576 @default.
- W2035193279 isParatext "false" @default.
- W2035193279 isRetracted "false" @default.
- W2035193279 magId "2035193279" @default.
- W2035193279 workType "article" @default.