Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035232364> ?p ?o ?g. }
- W2035232364 endingPage "2171" @default.
- W2035232364 startingPage "2158" @default.
- W2035232364 abstract "A quantitative structure–activity relationship study of a series of HIV-1 reverse transcriptase inhibitors (2-amino-6-arylsulfonylbenzonitriles and their thio and sulfinyl congeners) was performed. Topological and geometrical, as well as quantum mechanical energy-related and charge distribution-related descriptors generated from CODESSA, were selected to describe the molecules. Principal component analysis (PCA) was used to select the training set. Six techniques: multiple linear regression (MLR), multivariate adaptive regression splines (MARS), radial basis function neural networks (RBFNN), general regression neural networks (GRNN), projection pursuit regression (PPR) and support vector machine (SVM) were used to establish QSAR models for two data sets: anti-HIV-1 activity and HIV-1 reverse transcriptase binding affinity. Results showed that PPR and SVM models provided powerful capacity of prediction." @default.
- W2035232364 created "2016-06-24" @default.
- W2035232364 creator A5001347785 @default.
- W2035232364 creator A5018969310 @default.
- W2035232364 creator A5037733419 @default.
- W2035232364 creator A5088612057 @default.
- W2035232364 date "2009-05-01" @default.
- W2035232364 modified "2023-09-30" @default.
- W2035232364 title "QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and nonlinear regression methods" @default.
- W2035232364 cites W1516720576 @default.
- W2035232364 cites W1585772109 @default.
- W2035232364 cites W1604938182 @default.
- W2035232364 cites W1969515074 @default.
- W2035232364 cites W1971256926 @default.
- W2035232364 cites W1974625550 @default.
- W2035232364 cites W1984094176 @default.
- W2035232364 cites W1986299774 @default.
- W2035232364 cites W2007698848 @default.
- W2035232364 cites W2011580004 @default.
- W2035232364 cites W2015543341 @default.
- W2035232364 cites W2018335094 @default.
- W2035232364 cites W2019845453 @default.
- W2035232364 cites W2021229217 @default.
- W2035232364 cites W2023752424 @default.
- W2035232364 cites W2026610312 @default.
- W2035232364 cites W2028927840 @default.
- W2035232364 cites W2036646970 @default.
- W2035232364 cites W2039522817 @default.
- W2035232364 cites W2052226480 @default.
- W2035232364 cites W2055207497 @default.
- W2035232364 cites W2063060349 @default.
- W2035232364 cites W2070010056 @default.
- W2035232364 cites W2078624991 @default.
- W2035232364 cites W2091706571 @default.
- W2035232364 cites W2091886411 @default.
- W2035232364 cites W2096451161 @default.
- W2035232364 cites W2117784959 @default.
- W2035232364 cites W2118020555 @default.
- W2035232364 cites W2123737232 @default.
- W2035232364 cites W2141469607 @default.
- W2035232364 cites W2148603752 @default.
- W2035232364 cites W2156909104 @default.
- W2035232364 cites W2175970307 @default.
- W2035232364 cites W2213591582 @default.
- W2035232364 cites W2218190766 @default.
- W2035232364 cites W2766040292 @default.
- W2035232364 cites W340837311 @default.
- W2035232364 cites W650806132 @default.
- W2035232364 cites W85259421 @default.
- W2035232364 doi "https://doi.org/10.1016/j.ejmech.2008.10.021" @default.
- W2035232364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19054595" @default.
- W2035232364 hasPublicationYear "2009" @default.
- W2035232364 type Work @default.
- W2035232364 sameAs 2035232364 @default.
- W2035232364 citedByCount "55" @default.
- W2035232364 countsByYear W20352323642012 @default.
- W2035232364 countsByYear W20352323642013 @default.
- W2035232364 countsByYear W20352323642014 @default.
- W2035232364 countsByYear W20352323642015 @default.
- W2035232364 countsByYear W20352323642016 @default.
- W2035232364 countsByYear W20352323642017 @default.
- W2035232364 countsByYear W20352323642018 @default.
- W2035232364 countsByYear W20352323642019 @default.
- W2035232364 countsByYear W20352323642020 @default.
- W2035232364 countsByYear W20352323642021 @default.
- W2035232364 countsByYear W20352323642022 @default.
- W2035232364 countsByYear W20352323642023 @default.
- W2035232364 crossrefType "journal-article" @default.
- W2035232364 hasAuthorship W2035232364A5001347785 @default.
- W2035232364 hasAuthorship W2035232364A5018969310 @default.
- W2035232364 hasAuthorship W2035232364A5037733419 @default.
- W2035232364 hasAuthorship W2035232364A5088612057 @default.
- W2035232364 hasConcept C104317684 @default.
- W2035232364 hasConcept C105795698 @default.
- W2035232364 hasConcept C119857082 @default.
- W2035232364 hasConcept C12267149 @default.
- W2035232364 hasConcept C154945302 @default.
- W2035232364 hasConcept C156719811 @default.
- W2035232364 hasConcept C164126121 @default.
- W2035232364 hasConcept C185592680 @default.
- W2035232364 hasConcept C186060115 @default.
- W2035232364 hasConcept C27438332 @default.
- W2035232364 hasConcept C33923547 @default.
- W2035232364 hasConcept C41008148 @default.
- W2035232364 hasConcept C44882253 @default.
- W2035232364 hasConcept C48921125 @default.
- W2035232364 hasConcept C50644808 @default.
- W2035232364 hasConcept C55493867 @default.
- W2035232364 hasConcept C64946054 @default.
- W2035232364 hasConcept C67705224 @default.
- W2035232364 hasConcept C71240020 @default.
- W2035232364 hasConcept C74887250 @default.
- W2035232364 hasConcept C83546350 @default.
- W2035232364 hasConcept C86803240 @default.
- W2035232364 hasConceptScore W2035232364C104317684 @default.
- W2035232364 hasConceptScore W2035232364C105795698 @default.
- W2035232364 hasConceptScore W2035232364C119857082 @default.
- W2035232364 hasConceptScore W2035232364C12267149 @default.