Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035250304> ?p ?o ?g. }
- W2035250304 endingPage "6063" @default.
- W2035250304 startingPage "6048" @default.
- W2035250304 abstract "Manganese (Mn) oxides are among the strongest oxidants and sorbents in the environment, impacting the transport and speciation of metals, cycling of carbon, and flow of electrons within soils and sediments. The oxidation of Mn(II) to Mn(III/IV) oxides has been primarily attributed to biological processes, due in part to the faster rates of bacterial Mn(II) oxidation compared to observed mineral-induced and other abiotic rates. Here we explore the reactivity of biogenic Mn oxides formed by a common marine bacterium (Roseobacter sp. AzwK-3b), which has been previously shown to oxidize Mn(II) via the production of extracellular superoxide. Oxidation of Mn(II) by superoxide results in the formation of highly reactive colloidal birnessite with hexagonal symmetry. The colloidal oxides induce the rapid oxidation of Mn(II), with dramatically accelerated rates in the presence of organics, presumably due to mineral surface-catalyzed organic radical generation. Mn(II) oxidation by the colloids is further accelerated in presence of both organics and light, implicating reactive oxygen species in aiding abiotic oxidation. Indeed, the enhancement of Mn(II) oxidation is negated when the colloids are reacted with Mn(II) in the presence of superoxide dismutase, an enzyme that scavenges the reactive oxygen species (ROS) superoxide. The reactivity of the colloidal phase is short-lived due to the rapid evolution of the birnessite from hexagonal to pseudo-orthogonal symmetry. The secondary particulate triclinic birnessite phase exhibits a distinct lack of Mn(II) oxidation and subsequent Mn oxide formation. Thus, the evolution of initial reactive hexagonal birnessite to non-reactive triclinic birnessite imposes the need for continuous production of new colloidal hexagonal particles for Mn(II) oxidation to be sustained, illustrating an intimate dependency of enzymatic and mineral-based reactions in Mn(II) oxidation. Further, the coupled enzymatic and mineral-induced pathways are linked such that enzymatic formation of Mn oxide is requisite for the mineral-induced pathway to occur. Here, we show that Mn(II) oxidation involves a complex network of abiotic and biotic processes, including enzymatically produced superoxide, mineral catalysis, organic reactions with mineral surfaces, and likely photo-production of ROS. The complexity of coupled reactions involved in Mn(II) oxidation here highlights the need for further investigations of microbially-mediated Mn oxide formation, including identifying the role of Mn oxide surfaces, organics, reactive oxygen species, and light in Mn(II) oxidation and Mn oxide phase evolution." @default.
- W2035250304 created "2016-06-24" @default.
- W2035250304 creator A5023729183 @default.
- W2035250304 creator A5046893562 @default.
- W2035250304 creator A5052090764 @default.
- W2035250304 creator A5060067287 @default.
- W2035250304 creator A5079873012 @default.
- W2035250304 creator A5083320398 @default.
- W2035250304 date "2011-10-01" @default.
- W2035250304 modified "2023-10-17" @default.
- W2035250304 title "Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides" @default.
- W2035250304 cites W1207819409 @default.
- W2035250304 cites W1496307198 @default.
- W2035250304 cites W1535283642 @default.
- W2035250304 cites W1969884173 @default.
- W2035250304 cites W1975576984 @default.
- W2035250304 cites W1977077161 @default.
- W2035250304 cites W1978450379 @default.
- W2035250304 cites W1985563130 @default.
- W2035250304 cites W1985610863 @default.
- W2035250304 cites W1986498808 @default.
- W2035250304 cites W1993596116 @default.
- W2035250304 cites W1994052285 @default.
- W2035250304 cites W1995755447 @default.
- W2035250304 cites W1996934455 @default.
- W2035250304 cites W2003815179 @default.
- W2035250304 cites W2004789017 @default.
- W2035250304 cites W2008237318 @default.
- W2035250304 cites W2019339802 @default.
- W2035250304 cites W2020218467 @default.
- W2035250304 cites W2026570291 @default.
- W2035250304 cites W2027519825 @default.
- W2035250304 cites W2028070396 @default.
- W2035250304 cites W2030530403 @default.
- W2035250304 cites W2037661231 @default.
- W2035250304 cites W2039078568 @default.
- W2035250304 cites W2047511637 @default.
- W2035250304 cites W2049621803 @default.
- W2035250304 cites W2052394654 @default.
- W2035250304 cites W2057104903 @default.
- W2035250304 cites W2060285841 @default.
- W2035250304 cites W2061284143 @default.
- W2035250304 cites W2064898855 @default.
- W2035250304 cites W2065628887 @default.
- W2035250304 cites W2066070540 @default.
- W2035250304 cites W2066680777 @default.
- W2035250304 cites W2067961533 @default.
- W2035250304 cites W2072355352 @default.
- W2035250304 cites W2073173544 @default.
- W2035250304 cites W2075295962 @default.
- W2035250304 cites W2083454439 @default.
- W2035250304 cites W2085979154 @default.
- W2035250304 cites W2090095910 @default.
- W2035250304 cites W2093016184 @default.
- W2035250304 cites W2096314899 @default.
- W2035250304 cites W2097597887 @default.
- W2035250304 cites W2110020416 @default.
- W2035250304 cites W2116739191 @default.
- W2035250304 cites W2130001540 @default.
- W2035250304 cites W2141796847 @default.
- W2035250304 cites W2144383729 @default.
- W2035250304 cites W2173171001 @default.
- W2035250304 cites W2244524084 @default.
- W2035250304 cites W2289960406 @default.
- W2035250304 cites W2306153471 @default.
- W2035250304 cites W2404898580 @default.
- W2035250304 cites W2465292115 @default.
- W2035250304 doi "https://doi.org/10.1016/j.gca.2011.07.026" @default.
- W2035250304 hasPublicationYear "2011" @default.
- W2035250304 type Work @default.
- W2035250304 sameAs 2035250304 @default.
- W2035250304 citedByCount "181" @default.
- W2035250304 countsByYear W20352503042012 @default.
- W2035250304 countsByYear W20352503042013 @default.
- W2035250304 countsByYear W20352503042014 @default.
- W2035250304 countsByYear W20352503042015 @default.
- W2035250304 countsByYear W20352503042016 @default.
- W2035250304 countsByYear W20352503042017 @default.
- W2035250304 countsByYear W20352503042018 @default.
- W2035250304 countsByYear W20352503042019 @default.
- W2035250304 countsByYear W20352503042020 @default.
- W2035250304 countsByYear W20352503042021 @default.
- W2035250304 countsByYear W20352503042022 @default.
- W2035250304 countsByYear W20352503042023 @default.
- W2035250304 crossrefType "journal-article" @default.
- W2035250304 hasAuthorship W2035250304A5023729183 @default.
- W2035250304 hasAuthorship W2035250304A5046893562 @default.
- W2035250304 hasAuthorship W2035250304A5052090764 @default.
- W2035250304 hasAuthorship W2035250304A5060067287 @default.
- W2035250304 hasAuthorship W2035250304A5079873012 @default.
- W2035250304 hasAuthorship W2035250304A5083320398 @default.
- W2035250304 hasConcept C127313418 @default.
- W2035250304 hasConcept C132215390 @default.
- W2035250304 hasConcept C142724271 @default.
- W2035250304 hasConcept C151730666 @default.
- W2035250304 hasConcept C178790620 @default.
- W2035250304 hasConcept C179104552 @default.
- W2035250304 hasConcept C181199279 @default.