Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035276572> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2035276572 endingPage "106" @default.
- W2035276572 startingPage "101" @default.
- W2035276572 abstract "Let <italic>D</italic> be a bounded domain in the complex plane. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^infty }(D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Banach algebra of bounded analytic functions on <italic>D</italic>. The corona problem asks whether <italic>D</italic> is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=weak Superscript asterisk> <mml:semantics> <mml:msup> <mml:mtext>weak</mml:mtext> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>text {weak}^ast</mml:annotation> </mml:semantics> </mml:math> </inline-formula> dense in the space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper M left-parenthesis upper D right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {M}(D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of maximal ideals of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{H^infty }(D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Carleson [3] proved that the open unit disc <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Delta 0> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{Delta _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is dense in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German upper M left-parenthesis normal upper Delta 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>M</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {M}({Delta _0})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Stout [9] extended Carleson’s result to finitely connected domains. Behrens [2] found a class of infinitely connected domains for which the corona problem has an affirmative answer. In this paper we will use Behrens’ idea to extend the results to more general domains. See [11] for further extensions and applications of these techniques." @default.
- W2035276572 created "2016-06-24" @default.
- W2035276572 creator A5081363733 @default.
- W2035276572 date "1977-01-01" @default.
- W2035276572 modified "2023-10-14" @default.
- W2035276572 title "A class of infinitely connected domains and the corona" @default.
- W2035276572 cites W1979880543 @default.
- W2035276572 cites W2014376374 @default.
- W2035276572 cites W2032941762 @default.
- W2035276572 cites W2053703693 @default.
- W2035276572 cites W2326838073 @default.
- W2035276572 cites W4233296997 @default.
- W2035276572 cites W4234727010 @default.
- W2035276572 cites W4237343742 @default.
- W2035276572 doi "https://doi.org/10.1090/s0002-9947-1977-0477784-1" @default.
- W2035276572 hasPublicationYear "1977" @default.
- W2035276572 type Work @default.
- W2035276572 sameAs 2035276572 @default.
- W2035276572 citedByCount "6" @default.
- W2035276572 countsByYear W20352765722014 @default.
- W2035276572 crossrefType "journal-article" @default.
- W2035276572 hasAuthorship W2035276572A5081363733 @default.
- W2035276572 hasBestOaLocation W20352765721 @default.
- W2035276572 hasConcept C11413529 @default.
- W2035276572 hasConcept C154945302 @default.
- W2035276572 hasConcept C33923547 @default.
- W2035276572 hasConcept C41008148 @default.
- W2035276572 hasConceptScore W2035276572C11413529 @default.
- W2035276572 hasConceptScore W2035276572C154945302 @default.
- W2035276572 hasConceptScore W2035276572C33923547 @default.
- W2035276572 hasConceptScore W2035276572C41008148 @default.
- W2035276572 hasIssue "1" @default.
- W2035276572 hasLocation W20352765721 @default.
- W2035276572 hasOpenAccess W2035276572 @default.
- W2035276572 hasPrimaryLocation W20352765721 @default.
- W2035276572 hasRelatedWork W1587224694 @default.
- W2035276572 hasRelatedWork W1979597421 @default.
- W2035276572 hasRelatedWork W2007980826 @default.
- W2035276572 hasRelatedWork W2061531152 @default.
- W2035276572 hasRelatedWork W2077600819 @default.
- W2035276572 hasRelatedWork W2748952813 @default.
- W2035276572 hasRelatedWork W2899084033 @default.
- W2035276572 hasRelatedWork W3002753104 @default.
- W2035276572 hasRelatedWork W4225152035 @default.
- W2035276572 hasRelatedWork W4245490552 @default.
- W2035276572 hasVolume "231" @default.
- W2035276572 isParatext "false" @default.
- W2035276572 isRetracted "false" @default.
- W2035276572 magId "2035276572" @default.
- W2035276572 workType "article" @default.