Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035394769> ?p ?o ?g. }
- W2035394769 endingPage "351" @default.
- W2035394769 startingPage "351" @default.
- W2035394769 abstract "Artificial neural network (ANN) analysis methods have led to more sensitive diagnosis of myocardial infarction and improved prediction of mortality in breast cancer, prostate cancer, and trauma patients. Prognostic studies have identified early clinical and radiographic predictors of mortality after intracerebral hemorrhage (ICH). To date, published models have not achieved the accuracy necessary for use in making decisions to limit medical interventions. We recently reported a logistic regression model that correctly classified 79% of patients who died and 90% of patients who survived. In an attempt to improve prediction of mortality we computed an ANN model with the same data.To determine whether an ANN analysis would provide a more accurate prediction of mortality after ICH when compared with multiple logistic regression models computed using the same data.Analyses were conducted on data collected prospectively on 81 patients with supratentorial ICH. Multiple logistic regression was used to predict hospital mortality, then an ANN analysis was applied to the same data set. Input variables were age, gender, race, hydrocephalus, mean arterial pressure, pulse pressure, Glasgow Coma Scale score, intraventricular hemorrhage, hydrocephalus, hematoma size, hematoma location (ganglionic, thalamic, or lobar), cisternal effacement, pineal shift, history of hypertension, history of diabetes, and age.The ANN model correctly classified all patients (100%) as alive or dead compared with 85% correct classification for the logistic regression model. A second ANN verification model was equally accurate. The ANN was superior to the logistic regression model on all objective measures of fit.ANN analysis more effectively uses information for prediction of mortality in this sample of patients with ICH. A well-validated ANN may have a role in the clinical management of ICH." @default.
- W2035394769 created "2016-06-24" @default.
- W2035394769 creator A5019068952 @default.
- W2035394769 creator A5028572523 @default.
- W2035394769 creator A5048572359 @default.
- W2035394769 creator A5064928512 @default.
- W2035394769 date "1999-07-01" @default.
- W2035394769 modified "2023-10-16" @default.
- W2035394769 title "Artificial neural networks improve the prediction of mortality in intracerebral hemorrhage" @default.
- W2035394769 cites W1493346911 @default.
- W2035394769 cites W1546313835 @default.
- W2035394769 cites W1975023582 @default.
- W2035394769 cites W1981194197 @default.
- W2035394769 cites W2006863063 @default.
- W2035394769 cites W2011252631 @default.
- W2035394769 cites W2019734720 @default.
- W2035394769 cites W2032592968 @default.
- W2035394769 cites W2035602263 @default.
- W2035394769 cites W2039173155 @default.
- W2035394769 cites W2042527026 @default.
- W2035394769 cites W2050189583 @default.
- W2035394769 cites W2053254942 @default.
- W2035394769 cites W2059928130 @default.
- W2035394769 cites W2068405009 @default.
- W2035394769 cites W2069703221 @default.
- W2035394769 cites W2084298387 @default.
- W2035394769 cites W2104534907 @default.
- W2035394769 cites W2128718068 @default.
- W2035394769 cites W2145273869 @default.
- W2035394769 cites W2150554231 @default.
- W2035394769 cites W2156133368 @default.
- W2035394769 cites W2161622686 @default.
- W2035394769 cites W2168440852 @default.
- W2035394769 cites W2168905392 @default.
- W2035394769 cites W2320670298 @default.
- W2035394769 cites W2411611948 @default.
- W2035394769 doi "https://doi.org/10.1212/wnl.53.2.351" @default.
- W2035394769 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10430425" @default.
- W2035394769 hasPublicationYear "1999" @default.
- W2035394769 type Work @default.
- W2035394769 sameAs 2035394769 @default.
- W2035394769 citedByCount "39" @default.
- W2035394769 countsByYear W20353947692012 @default.
- W2035394769 countsByYear W20353947692014 @default.
- W2035394769 countsByYear W20353947692015 @default.
- W2035394769 countsByYear W20353947692016 @default.
- W2035394769 countsByYear W20353947692017 @default.
- W2035394769 countsByYear W20353947692018 @default.
- W2035394769 countsByYear W20353947692019 @default.
- W2035394769 countsByYear W20353947692020 @default.
- W2035394769 countsByYear W20353947692022 @default.
- W2035394769 countsByYear W20353947692023 @default.
- W2035394769 crossrefType "journal-article" @default.
- W2035394769 hasAuthorship W2035394769A5019068952 @default.
- W2035394769 hasAuthorship W2035394769A5028572523 @default.
- W2035394769 hasAuthorship W2035394769A5048572359 @default.
- W2035394769 hasAuthorship W2035394769A5064928512 @default.
- W2035394769 hasConcept C126322002 @default.
- W2035394769 hasConcept C141071460 @default.
- W2035394769 hasConcept C151956035 @default.
- W2035394769 hasConcept C17624336 @default.
- W2035394769 hasConcept C2777094939 @default.
- W2035394769 hasConcept C2778134817 @default.
- W2035394769 hasConcept C2778376644 @default.
- W2035394769 hasConcept C2779234561 @default.
- W2035394769 hasConcept C2779252433 @default.
- W2035394769 hasConcept C2779662492 @default.
- W2035394769 hasConcept C54355233 @default.
- W2035394769 hasConcept C71924100 @default.
- W2035394769 hasConcept C86803240 @default.
- W2035394769 hasConceptScore W2035394769C126322002 @default.
- W2035394769 hasConceptScore W2035394769C141071460 @default.
- W2035394769 hasConceptScore W2035394769C151956035 @default.
- W2035394769 hasConceptScore W2035394769C17624336 @default.
- W2035394769 hasConceptScore W2035394769C2777094939 @default.
- W2035394769 hasConceptScore W2035394769C2778134817 @default.
- W2035394769 hasConceptScore W2035394769C2778376644 @default.
- W2035394769 hasConceptScore W2035394769C2779234561 @default.
- W2035394769 hasConceptScore W2035394769C2779252433 @default.
- W2035394769 hasConceptScore W2035394769C2779662492 @default.
- W2035394769 hasConceptScore W2035394769C54355233 @default.
- W2035394769 hasConceptScore W2035394769C71924100 @default.
- W2035394769 hasConceptScore W2035394769C86803240 @default.
- W2035394769 hasIssue "2" @default.
- W2035394769 hasLocation W20353947691 @default.
- W2035394769 hasLocation W20353947692 @default.
- W2035394769 hasOpenAccess W2035394769 @default.
- W2035394769 hasPrimaryLocation W20353947691 @default.
- W2035394769 hasRelatedWork W1990788245 @default.
- W2035394769 hasRelatedWork W1995944418 @default.
- W2035394769 hasRelatedWork W2080456875 @default.
- W2035394769 hasRelatedWork W2096068588 @default.
- W2035394769 hasRelatedWork W2139856993 @default.
- W2035394769 hasRelatedWork W2355651569 @default.
- W2035394769 hasRelatedWork W2366661378 @default.
- W2035394769 hasRelatedWork W2371617799 @default.
- W2035394769 hasRelatedWork W2887790854 @default.
- W2035394769 hasRelatedWork W2914947941 @default.