Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035593843> ?p ?o ?g. }
- W2035593843 endingPage "1552" @default.
- W2035593843 startingPage "1542" @default.
- W2035593843 abstract "Parameter estimation procedures are very important in the chemical engineering field for development of mathematical models, since design, optimization and advanced control of chemical processes depend on model parameter values obtained from experimental data. Model nonlinearity makes the estimation of parameter and the statistical analysis of parameter estimates more difficult and more challenging. In this work, it is shown that many of these difficulties can be overcome with the use of heuristic optimization methods, such as the particle swarm optimization (PSO) method. Parameter estimation problems are solved here with PSO and it is shown that the PSO method is efficient for both minimization and construction of the confidence region of parameter estimates. Moreover, it is shown that the elliptical approximation of confidence regions of nonlinear model parameters can be very poor sometimes and that more accurate likelihood confidence regions can be constructed with PSO, allowing for more reliable statistical analysis of the significance of parameter estimates." @default.
- W2035593843 created "2016-06-24" @default.
- W2035593843 creator A5013448140 @default.
- W2035593843 creator A5053892985 @default.
- W2035593843 creator A5076271307 @default.
- W2035593843 creator A5084764220 @default.
- W2035593843 date "2008-03-01" @default.
- W2035593843 modified "2023-10-14" @default.
- W2035593843 title "Nonlinear parameter estimation through particle swarm optimization" @default.
- W2035593843 cites W1964864354 @default.
- W2035593843 cites W1988372598 @default.
- W2035593843 cites W1995375407 @default.
- W2035593843 cites W2000125750 @default.
- W2035593843 cites W2015237540 @default.
- W2035593843 cites W2017169136 @default.
- W2035593843 cites W2018806809 @default.
- W2035593843 cites W2024060531 @default.
- W2035593843 cites W2028484327 @default.
- W2035593843 cites W2028913083 @default.
- W2035593843 cites W2037282690 @default.
- W2035593843 cites W2038037428 @default.
- W2035593843 cites W2053155868 @default.
- W2035593843 cites W2059670797 @default.
- W2035593843 cites W2073558204 @default.
- W2035593843 cites W2081749411 @default.
- W2035593843 cites W2090774397 @default.
- W2035593843 cites W2111393363 @default.
- W2035593843 cites W2112555173 @default.
- W2035593843 cites W2115461005 @default.
- W2035593843 cites W2143603820 @default.
- W2035593843 cites W2149580512 @default.
- W2035593843 cites W2152195021 @default.
- W2035593843 cites W2165299997 @default.
- W2035593843 cites W2169245194 @default.
- W2035593843 cites W2171107890 @default.
- W2035593843 cites W2460320198 @default.
- W2035593843 cites W2034846054 @default.
- W2035593843 doi "https://doi.org/10.1016/j.ces.2007.11.024" @default.
- W2035593843 hasPublicationYear "2008" @default.
- W2035593843 type Work @default.
- W2035593843 sameAs 2035593843 @default.
- W2035593843 citedByCount "308" @default.
- W2035593843 countsByYear W20355938432012 @default.
- W2035593843 countsByYear W20355938432013 @default.
- W2035593843 countsByYear W20355938432014 @default.
- W2035593843 countsByYear W20355938432015 @default.
- W2035593843 countsByYear W20355938432016 @default.
- W2035593843 countsByYear W20355938432017 @default.
- W2035593843 countsByYear W20355938432018 @default.
- W2035593843 countsByYear W20355938432019 @default.
- W2035593843 countsByYear W20355938432020 @default.
- W2035593843 countsByYear W20355938432021 @default.
- W2035593843 countsByYear W20355938432022 @default.
- W2035593843 countsByYear W20355938432023 @default.
- W2035593843 crossrefType "journal-article" @default.
- W2035593843 hasAuthorship W2035593843A5013448140 @default.
- W2035593843 hasAuthorship W2035593843A5053892985 @default.
- W2035593843 hasAuthorship W2035593843A5076271307 @default.
- W2035593843 hasAuthorship W2035593843A5084764220 @default.
- W2035593843 hasConcept C105795698 @default.
- W2035593843 hasConcept C11413529 @default.
- W2035593843 hasConcept C121332964 @default.
- W2035593843 hasConcept C126255220 @default.
- W2035593843 hasConcept C143380155 @default.
- W2035593843 hasConcept C147764199 @default.
- W2035593843 hasConcept C158622935 @default.
- W2035593843 hasConcept C167928553 @default.
- W2035593843 hasConcept C173801870 @default.
- W2035593843 hasConcept C28826006 @default.
- W2035593843 hasConcept C33923547 @default.
- W2035593843 hasConcept C41008148 @default.
- W2035593843 hasConcept C44249647 @default.
- W2035593843 hasConcept C62520636 @default.
- W2035593843 hasConcept C85617194 @default.
- W2035593843 hasConceptScore W2035593843C105795698 @default.
- W2035593843 hasConceptScore W2035593843C11413529 @default.
- W2035593843 hasConceptScore W2035593843C121332964 @default.
- W2035593843 hasConceptScore W2035593843C126255220 @default.
- W2035593843 hasConceptScore W2035593843C143380155 @default.
- W2035593843 hasConceptScore W2035593843C147764199 @default.
- W2035593843 hasConceptScore W2035593843C158622935 @default.
- W2035593843 hasConceptScore W2035593843C167928553 @default.
- W2035593843 hasConceptScore W2035593843C173801870 @default.
- W2035593843 hasConceptScore W2035593843C28826006 @default.
- W2035593843 hasConceptScore W2035593843C33923547 @default.
- W2035593843 hasConceptScore W2035593843C41008148 @default.
- W2035593843 hasConceptScore W2035593843C44249647 @default.
- W2035593843 hasConceptScore W2035593843C62520636 @default.
- W2035593843 hasConceptScore W2035593843C85617194 @default.
- W2035593843 hasIssue "6" @default.
- W2035593843 hasLocation W20355938431 @default.
- W2035593843 hasOpenAccess W2035593843 @default.
- W2035593843 hasPrimaryLocation W20355938431 @default.
- W2035593843 hasRelatedWork W1979322129 @default.
- W2035593843 hasRelatedWork W2170286667 @default.
- W2035593843 hasRelatedWork W2394066113 @default.
- W2035593843 hasRelatedWork W2532594146 @default.
- W2035593843 hasRelatedWork W2738182708 @default.