Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035615036> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2035615036 endingPage "10034" @default.
- W2035615036 startingPage "10030" @default.
- W2035615036 abstract "A homologue of human protein kinase C (PKC)-related kinase-2, PRK2, which had previously escaped identification in normal mammalian tissues, was isolated from rat liver as the protease-activated kinase (PAK) originally named PAK-2. The 130-kDa cytosolic enzyme was purified to homogeneity and shown by tryptic peptide and reverse transcriptase- polymerase chain reaction (RT-PCR)-amplified rat cDNA sequence analyses to be structurally related to the 116-kDa rat hepatic PAK-1/protein kinase N (PKN) and, even more closely (95% sequence identity) to the 130-kDa human PKC-related kinase, PRK2. Rat myeloma RNA was used as the RT-PCR template because of its relative abundance in PAK-2/PRK2 mRNA compared with liver and other rat tissues. The catalytic properties of PAK-2/PRK2 in many respects resembled those of hepatic PAK-1/PKN, but were distinguished by more favorable kinetics with several peptide substrates, and greater sensitivity to PKC pseudosubstrate and polybasic amino acid inhibitors. PAK-2/PRK2 was also activated by lipids, particularly cardiolipin and to a lesser extent by other acidic phospholipids and unsaturated fatty acids. Cardiolipin activation was most evident with autophosphorylation and histone H2B phosphorylation, but only marginally evident with the favored ribosomal S6-(229–239) peptide substrate for the protease-activated kinase activity. It was concluded that PAK-2 is the rat homologue of human PRK2, with biochemical properties distinct from although overlapping those of the PAK-1/PKN/PRK1 isoform. A homologue of human protein kinase C (PKC)-related kinase-2, PRK2, which had previously escaped identification in normal mammalian tissues, was isolated from rat liver as the protease-activated kinase (PAK) originally named PAK-2. The 130-kDa cytosolic enzyme was purified to homogeneity and shown by tryptic peptide and reverse transcriptase- polymerase chain reaction (RT-PCR)-amplified rat cDNA sequence analyses to be structurally related to the 116-kDa rat hepatic PAK-1/protein kinase N (PKN) and, even more closely (95% sequence identity) to the 130-kDa human PKC-related kinase, PRK2. Rat myeloma RNA was used as the RT-PCR template because of its relative abundance in PAK-2/PRK2 mRNA compared with liver and other rat tissues. The catalytic properties of PAK-2/PRK2 in many respects resembled those of hepatic PAK-1/PKN, but were distinguished by more favorable kinetics with several peptide substrates, and greater sensitivity to PKC pseudosubstrate and polybasic amino acid inhibitors. PAK-2/PRK2 was also activated by lipids, particularly cardiolipin and to a lesser extent by other acidic phospholipids and unsaturated fatty acids. Cardiolipin activation was most evident with autophosphorylation and histone H2B phosphorylation, but only marginally evident with the favored ribosomal S6-(229–239) peptide substrate for the protease-activated kinase activity. It was concluded that PAK-2 is the rat homologue of human PRK2, with biochemical properties distinct from although overlapping those of the PAK-1/PKN/PRK1 isoform. INTRODUCTIONLipid-regulated protein kinases, best characterized by the protein kinase Cs (PKCs) 1The abbreviations used are: PKCprotein kinase CPAKprotease-activated protein kinasePRKprotein kinase C-related kinasePKNprotein kinase NHPLChigh performance liquid chromatographyPAGEpolyacrylamide gel electrophoresisS6-(229–239)synthetic peptide analogue of ribosomal protein S6, residues 229-239 (Ala-Lys-Arg-Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala)PKC-α-(19–31)pseudosubstrate inhibitor peptide (Arg-Phe-Ala-Arg-Lys-Gly-Ala-Leu-Arg-Gln-Lys-Asn-Val)GS-(1–12)synthetic peptide analogue based on skeletal muscle glycogen synthase sequence, residues 1-12, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-LysEGFR-(650–658)synthetic peptide analogue of epidermal growth factor receptor (Val-Arg-Lys-Arg-Thr-Leu-Arg-Arg-Leu)CLcardiolipinPCRpolymerase chain reactionRTreverse transcriptasePMSFphenylmethylsulfonyl fluoride. (1Nishizuka Y Science. 1992; 258: 607-614Google Scholar, 2Nishizuka Y FASEB J. 1995; 9: 484-496Google Scholar, 3Newton A. J. Biol. Chem. 1995; 270: 28495-28498Google Scholar), also include the recently discovered family variously named the liver PAK 2The often used abbreviation PAK to describe protease-activated kinase (e.g. see Refs. 4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, and 19Tahara S.M. Traugh J.A. J. Biol. Chem. 1981; 256: 11558-11564Google Scholar) should not be confused with the recent use of the same abbreviation to describe p21 protein-activated kinases (e.g. see Manser et al (29Manser E. Leung T. Sallhuddin H. Zhao Z.-S. Lim L. Nature. 1994; 367: 40-46Google Scholar)). (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), PKN (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 7Mukai H. Kitagawa M. Shibata H. Takanaga H. Mori K. Shimakawa M. Miyahara M. Hirao K. Ono Y. Biochem. Biophys. Res. Commun. 1995; 204: 348-356Google Scholar, 8Kitagawa M. Mukai H. Shibata H. Ono Y. Biochem. J. 1995; 310: 657-664Google Scholar), and the PKC-related kinases (PRKs) (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar, 10Palmer R.H. Parker P.J. Biochem. J. 1995; 309: 315-320Google Scholar, 11Palmer R.H. Dekker L.D. Woscholski R. Le Good A.J. Gigg R. Parker P.J. J. Biol. Chem. 1995; 270: 22412-22416Google Scholar). While several PKN/PRK isoforms have been detected by cDNA/PCR analyses (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), direct mRNA analyses have detected only the ubiquitously expressed PKN/PRK1 in human and rat tissues (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), PRK-3 in human myeloma and a few rat tissues (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), and PRK2 only in human myeloma cell lines (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar). PKN/PRK1-type isoforms have been isolated and structurally characterized, originally as the naturally occurring liver protease-activated kinase, PAK-1 (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), and, subsequently as the cDNA-derived recombinant proteins (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar, 12Peng B. Morrice N.A. Groenen L. Wettenhall R.E.H. J. Biol. Chem. 1996; 271: 32233-32240Google Scholar). Isoforms of this type share several biochemical characteristics with the PKCs, particularly their general substrate preferences and activatability by proteases, phospholipids and unsaturated fatty acids (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 7Mukai H. Kitagawa M. Shibata H. Takanaga H. Mori K. Shimakawa M. Miyahara M. Hirao K. Ono Y. Biochem. Biophys. Res. Commun. 1995; 204: 348-356Google Scholar, 8Kitagawa M. Mukai H. Shibata H. Ono Y. Biochem. J. 1995; 310: 657-664Google Scholar, 10Palmer R.H. Parker P.J. Biochem. J. 1995; 309: 315-320Google Scholar, 11Palmer R.H. Dekker L.D. Woscholski R. Le Good A.J. Gigg R. Parker P.J. J. Biol. Chem. 1995; 270: 22412-22416Google Scholar, 13Morrice N.A. Fecondo J. Wettenhall R.E.H. FEBS Lett. 1994; 351: 171-175Google Scholar), but are distinguished from the PKCs by their phospholipid specificity (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 13Morrice N.A. Fecondo J. Wettenhall R.E.H. FEBS Lett. 1994; 351: 171-175Google Scholar), inhibitor sensitivity (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), substrate kinetics (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), and activatability by the RhoA GTP-binding protein (14Amano M. Mukai H. Ono Y. Chihara K. Matsui T. Hamajima Y. Okawa K. Iwamatsu A. Kaibuchi K. Science. 1996; 271: 648-650Google Scholar, 15Mukai H. Miyahara M. Sunakawa H. Shibata H. Toshimori M. Kitagawa M. Shimakawa M. Takanaga H. Ono Y. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 10195-10199Google Scholar). Human PRK1 and PRK2 share structurally very similar catalytic domains (87% identity), but relatively less similar N-terminal regulatory regions (48% identity; see Palmer and Parker (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar)), suggestive of different regulatory domain functions.The failure to detect PRK2 mRNA in normal human and rat tissues suggests either that expression is restricted to abnormal cells of the myeloma type (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar) or that low abundance or an intrinsic structural feature of the mRNA prevents its ready detection. Direct screening of rat liver extracts (cytosol) for PRK-like enzyme activities has identified a second protease-activated kinase (PAK-2) with biochemically similar, although nonidentical, properties to those of liver PAK-1/PKN (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 16Wettenhall R.E.H. Gabrielli B. Morrice N.A. Bozinova L. Kemp B.E. Stapleton D. Peptide Res. 1991; 4: 159-170Google Scholar). This investigation concerns the purification and characterization of this enzyme, including an assessment of its relationship with the PRKs. INTRODUCTIONLipid-regulated protein kinases, best characterized by the protein kinase Cs (PKCs) 1The abbreviations used are: PKCprotein kinase CPAKprotease-activated protein kinasePRKprotein kinase C-related kinasePKNprotein kinase NHPLChigh performance liquid chromatographyPAGEpolyacrylamide gel electrophoresisS6-(229–239)synthetic peptide analogue of ribosomal protein S6, residues 229-239 (Ala-Lys-Arg-Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala)PKC-α-(19–31)pseudosubstrate inhibitor peptide (Arg-Phe-Ala-Arg-Lys-Gly-Ala-Leu-Arg-Gln-Lys-Asn-Val)GS-(1–12)synthetic peptide analogue based on skeletal muscle glycogen synthase sequence, residues 1-12, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-LysEGFR-(650–658)synthetic peptide analogue of epidermal growth factor receptor (Val-Arg-Lys-Arg-Thr-Leu-Arg-Arg-Leu)CLcardiolipinPCRpolymerase chain reactionRTreverse transcriptasePMSFphenylmethylsulfonyl fluoride. (1Nishizuka Y Science. 1992; 258: 607-614Google Scholar, 2Nishizuka Y FASEB J. 1995; 9: 484-496Google Scholar, 3Newton A. J. Biol. Chem. 1995; 270: 28495-28498Google Scholar), also include the recently discovered family variously named the liver PAK 2The often used abbreviation PAK to describe protease-activated kinase (e.g. see Refs. 4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, and 19Tahara S.M. Traugh J.A. J. Biol. Chem. 1981; 256: 11558-11564Google Scholar) should not be confused with the recent use of the same abbreviation to describe p21 protein-activated kinases (e.g. see Manser et al (29Manser E. Leung T. Sallhuddin H. Zhao Z.-S. Lim L. Nature. 1994; 367: 40-46Google Scholar)). (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), PKN (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 7Mukai H. Kitagawa M. Shibata H. Takanaga H. Mori K. Shimakawa M. Miyahara M. Hirao K. Ono Y. Biochem. Biophys. Res. Commun. 1995; 204: 348-356Google Scholar, 8Kitagawa M. Mukai H. Shibata H. Ono Y. Biochem. J. 1995; 310: 657-664Google Scholar), and the PKC-related kinases (PRKs) (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar, 10Palmer R.H. Parker P.J. Biochem. J. 1995; 309: 315-320Google Scholar, 11Palmer R.H. Dekker L.D. Woscholski R. Le Good A.J. Gigg R. Parker P.J. J. Biol. Chem. 1995; 270: 22412-22416Google Scholar). While several PKN/PRK isoforms have been detected by cDNA/PCR analyses (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), direct mRNA analyses have detected only the ubiquitously expressed PKN/PRK1 in human and rat tissues (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), PRK-3 in human myeloma and a few rat tissues (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), and PRK2 only in human myeloma cell lines (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar). PKN/PRK1-type isoforms have been isolated and structurally characterized, originally as the naturally occurring liver protease-activated kinase, PAK-1 (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), and, subsequently as the cDNA-derived recombinant proteins (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar, 12Peng B. Morrice N.A. Groenen L. Wettenhall R.E.H. J. Biol. Chem. 1996; 271: 32233-32240Google Scholar). Isoforms of this type share several biochemical characteristics with the PKCs, particularly their general substrate preferences and activatability by proteases, phospholipids and unsaturated fatty acids (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 7Mukai H. Kitagawa M. Shibata H. Takanaga H. Mori K. Shimakawa M. Miyahara M. Hirao K. Ono Y. Biochem. Biophys. Res. Commun. 1995; 204: 348-356Google Scholar, 8Kitagawa M. Mukai H. Shibata H. Ono Y. Biochem. J. 1995; 310: 657-664Google Scholar, 10Palmer R.H. Parker P.J. Biochem. J. 1995; 309: 315-320Google Scholar, 11Palmer R.H. Dekker L.D. Woscholski R. Le Good A.J. Gigg R. Parker P.J. J. Biol. Chem. 1995; 270: 22412-22416Google Scholar, 13Morrice N.A. Fecondo J. Wettenhall R.E.H. FEBS Lett. 1994; 351: 171-175Google Scholar), but are distinguished from the PKCs by their phospholipid specificity (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 13Morrice N.A. Fecondo J. Wettenhall R.E.H. FEBS Lett. 1994; 351: 171-175Google Scholar), inhibitor sensitivity (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), substrate kinetics (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), and activatability by the RhoA GTP-binding protein (14Amano M. Mukai H. Ono Y. Chihara K. Matsui T. Hamajima Y. Okawa K. Iwamatsu A. Kaibuchi K. Science. 1996; 271: 648-650Google Scholar, 15Mukai H. Miyahara M. Sunakawa H. Shibata H. Toshimori M. Kitagawa M. Shimakawa M. Takanaga H. Ono Y. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 10195-10199Google Scholar). Human PRK1 and PRK2 share structurally very similar catalytic domains (87% identity), but relatively less similar N-terminal regulatory regions (48% identity; see Palmer and Parker (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar)), suggestive of different regulatory domain functions.The failure to detect PRK2 mRNA in normal human and rat tissues suggests either that expression is restricted to abnormal cells of the myeloma type (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar) or that low abundance or an intrinsic structural feature of the mRNA prevents its ready detection. Direct screening of rat liver extracts (cytosol) for PRK-like enzyme activities has identified a second protease-activated kinase (PAK-2) with biochemically similar, although nonidentical, properties to those of liver PAK-1/PKN (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 16Wettenhall R.E.H. Gabrielli B. Morrice N.A. Bozinova L. Kemp B.E. Stapleton D. Peptide Res. 1991; 4: 159-170Google Scholar). This investigation concerns the purification and characterization of this enzyme, including an assessment of its relationship with the PRKs. Lipid-regulated protein kinases, best characterized by the protein kinase Cs (PKCs) 1The abbreviations used are: PKCprotein kinase CPAKprotease-activated protein kinasePRKprotein kinase C-related kinasePKNprotein kinase NHPLChigh performance liquid chromatographyPAGEpolyacrylamide gel electrophoresisS6-(229–239)synthetic peptide analogue of ribosomal protein S6, residues 229-239 (Ala-Lys-Arg-Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala)PKC-α-(19–31)pseudosubstrate inhibitor peptide (Arg-Phe-Ala-Arg-Lys-Gly-Ala-Leu-Arg-Gln-Lys-Asn-Val)GS-(1–12)synthetic peptide analogue based on skeletal muscle glycogen synthase sequence, residues 1-12, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-LysEGFR-(650–658)synthetic peptide analogue of epidermal growth factor receptor (Val-Arg-Lys-Arg-Thr-Leu-Arg-Arg-Leu)CLcardiolipinPCRpolymerase chain reactionRTreverse transcriptasePMSFphenylmethylsulfonyl fluoride. (1Nishizuka Y Science. 1992; 258: 607-614Google Scholar, 2Nishizuka Y FASEB J. 1995; 9: 484-496Google Scholar, 3Newton A. J. Biol. Chem. 1995; 270: 28495-28498Google Scholar), also include the recently discovered family variously named the liver PAK 2The often used abbreviation PAK to describe protease-activated kinase (e.g. see Refs. 4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, and 19Tahara S.M. Traugh J.A. J. Biol. Chem. 1981; 256: 11558-11564Google Scholar) should not be confused with the recent use of the same abbreviation to describe p21 protein-activated kinases (e.g. see Manser et al (29Manser E. Leung T. Sallhuddin H. Zhao Z.-S. Lim L. Nature. 1994; 367: 40-46Google Scholar)). (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), PKN (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 7Mukai H. Kitagawa M. Shibata H. Takanaga H. Mori K. Shimakawa M. Miyahara M. Hirao K. Ono Y. Biochem. Biophys. Res. Commun. 1995; 204: 348-356Google Scholar, 8Kitagawa M. Mukai H. Shibata H. Ono Y. Biochem. J. 1995; 310: 657-664Google Scholar), and the PKC-related kinases (PRKs) (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar, 10Palmer R.H. Parker P.J. Biochem. J. 1995; 309: 315-320Google Scholar, 11Palmer R.H. Dekker L.D. Woscholski R. Le Good A.J. Gigg R. Parker P.J. J. Biol. Chem. 1995; 270: 22412-22416Google Scholar). While several PKN/PRK isoforms have been detected by cDNA/PCR analyses (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), direct mRNA analyses have detected only the ubiquitously expressed PKN/PRK1 in human and rat tissues (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), PRK-3 in human myeloma and a few rat tissues (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar), and PRK2 only in human myeloma cell lines (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar). PKN/PRK1-type isoforms have been isolated and structurally characterized, originally as the naturally occurring liver protease-activated kinase, PAK-1 (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), and, subsequently as the cDNA-derived recombinant proteins (6Mukai H. Ono Y. Biochem. Biophys. Res. Commun. 1994; 199: 897-904Google Scholar, 9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar, 12Peng B. Morrice N.A. Groenen L. Wettenhall R.E.H. J. Biol. Chem. 1996; 271: 32233-32240Google Scholar). Isoforms of this type share several biochemical characteristics with the PKCs, particularly their general substrate preferences and activatability by proteases, phospholipids and unsaturated fatty acids (4Gabrielli B. Wettenhall R.E.H. Kemp B.E. Quinn M. Bozinova L. FEBS Lett. 1984; 175: 219-226Google Scholar, 5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 7Mukai H. Kitagawa M. Shibata H. Takanaga H. Mori K. Shimakawa M. Miyahara M. Hirao K. Ono Y. Biochem. Biophys. Res. Commun. 1995; 204: 348-356Google Scholar, 8Kitagawa M. Mukai H. Shibata H. Ono Y. Biochem. J. 1995; 310: 657-664Google Scholar, 10Palmer R.H. Parker P.J. Biochem. J. 1995; 309: 315-320Google Scholar, 11Palmer R.H. Dekker L.D. Woscholski R. Le Good A.J. Gigg R. Parker P.J. J. Biol. Chem. 1995; 270: 22412-22416Google Scholar, 13Morrice N.A. Fecondo J. Wettenhall R.E.H. FEBS Lett. 1994; 351: 171-175Google Scholar), but are distinguished from the PKCs by their phospholipid specificity (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 13Morrice N.A. Fecondo J. Wettenhall R.E.H. FEBS Lett. 1994; 351: 171-175Google Scholar), inhibitor sensitivity (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), substrate kinetics (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar), and activatability by the RhoA GTP-binding protein (14Amano M. Mukai H. Ono Y. Chihara K. Matsui T. Hamajima Y. Okawa K. Iwamatsu A. Kaibuchi K. Science. 1996; 271: 648-650Google Scholar, 15Mukai H. Miyahara M. Sunakawa H. Shibata H. Toshimori M. Kitagawa M. Shimakawa M. Takanaga H. Ono Y. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 10195-10199Google Scholar). Human PRK1 and PRK2 share structurally very similar catalytic domains (87% identity), but relatively less similar N-terminal regulatory regions (48% identity; see Palmer and Parker (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar)), suggestive of different regulatory domain functions. protein kinase C protease-activated protein kinase protein kinase C-related kinase protein kinase N high performance liquid chromatography polyacrylamide gel electrophoresis synthetic peptide analogue of ribosomal protein S6, residues 229-239 (Ala-Lys-Arg-Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala) pseudosubstrate inhibitor peptide (Arg-Phe-Ala-Arg-Lys-Gly-Ala-Leu-Arg-Gln-Lys-Asn-Val) synthetic peptide analogue based on skeletal muscle glycogen synthase sequence, residues 1-12, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys synthetic peptide analogue of epidermal growth factor receptor (Val-Arg-Lys-Arg-Thr-Leu-Arg-Arg-Leu) cardiolipin polymerase chain reaction reverse transcriptase phenylmethylsulfonyl fluoride. The failure to detect PRK2 mRNA in normal human and rat tissues suggests either that expression is restricted to abnormal cells of the myeloma type (9Palmer R.H. Parker P.J. Eur. J. Biochem. 1995; 227: 344-351Google Scholar) or that low abundance or an intrinsic structural feature of the mRNA prevents its ready detection. Direct screening of rat liver extracts (cytosol) for PRK-like enzyme activities has identified a second protease-activated kinase (PAK-2) with biochemically similar, although nonidentical, properties to those of liver PAK-1/PKN (5Morrice N.A. Gabrielli B. Kemp B.E. Wettenhall R.E.H. J. Biol. Chem. 1994; 269: 20040-20046Google Scholar, 16Wettenhall R.E.H. Gabrielli B. Morrice N.A. Bozinova L. Kemp B.E. Stapleton D. Peptide Res. 1991; 4: 159-170Google Scholar). This investigation concerns the purification and characterization of this enzyme, including an assessment of its relationship with the PRKs. We thank Zlatan Trifunovic for technical assistance, Goslik Schepers for carrying out the automated DNA sequence analyses, Dr. Heung-Chin Cheng for critical reading of the manuscript, and Ann Best for typing the manuscript." @default.
- W2035615036 created "2016-06-24" @default.
- W2035615036 creator A5008191957 @default.
- W2035615036 creator A5028833569 @default.
- W2035615036 creator A5048696544 @default.
- W2035615036 creator A5067354114 @default.
- W2035615036 date "1997-04-01" @default.
- W2035615036 modified "2023-09-26" @default.
- W2035615036 title "Isolation and Characterization of a Structural Homologue of Human PRK2 from Rat Liver" @default.
- W2035615036 cites W1505974331 @default.
- W2035615036 cites W1534834744 @default.
- W2035615036 cites W1555145232 @default.
- W2035615036 cites W1559814842 @default.
- W2035615036 cites W1576671418 @default.
- W2035615036 cites W1690353241 @default.
- W2035615036 cites W1750345415 @default.
- W2035615036 cites W1941092842 @default.
- W2035615036 cites W1967804279 @default.
- W2035615036 cites W1974190630 @default.
- W2035615036 cites W1983138147 @default.
- W2035615036 cites W1994631727 @default.
- W2035615036 cites W2011756230 @default.
- W2035615036 cites W2019855384 @default.
- W2035615036 cites W2022961230 @default.
- W2035615036 cites W2049489958 @default.
- W2035615036 cites W2054246670 @default.
- W2035615036 cites W2056382343 @default.
- W2035615036 cites W2063472582 @default.
- W2035615036 cites W2070480282 @default.
- W2035615036 cites W2076442181 @default.
- W2035615036 cites W2081450796 @default.
- W2035615036 cites W2086524338 @default.
- W2035615036 cites W2089475281 @default.
- W2035615036 cites W2091673674 @default.
- W2035615036 cites W2100837269 @default.
- W2035615036 cites W2149897099 @default.
- W2035615036 cites W4293247451 @default.
- W2035615036 doi "https://doi.org/10.1074/jbc.272.15.10030" @default.
- W2035615036 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9092545" @default.
- W2035615036 hasPublicationYear "1997" @default.
- W2035615036 type Work @default.
- W2035615036 sameAs 2035615036 @default.
- W2035615036 citedByCount "34" @default.
- W2035615036 countsByYear W20356150362012 @default.
- W2035615036 countsByYear W20356150362014 @default.
- W2035615036 countsByYear W20356150362016 @default.
- W2035615036 countsByYear W20356150362020 @default.
- W2035615036 countsByYear W20356150362021 @default.
- W2035615036 countsByYear W20356150362023 @default.
- W2035615036 crossrefType "journal-article" @default.
- W2035615036 hasAuthorship W2035615036A5008191957 @default.
- W2035615036 hasAuthorship W2035615036A5028833569 @default.
- W2035615036 hasAuthorship W2035615036A5048696544 @default.
- W2035615036 hasAuthorship W2035615036A5067354114 @default.
- W2035615036 hasBestOaLocation W20356150361 @default.
- W2035615036 hasConcept C171250308 @default.
- W2035615036 hasConcept C181199279 @default.
- W2035615036 hasConcept C185592680 @default.
- W2035615036 hasConcept C192562407 @default.
- W2035615036 hasConcept C2775941552 @default.
- W2035615036 hasConcept C2776418720 @default.
- W2035615036 hasConcept C2780841128 @default.
- W2035615036 hasConcept C55493867 @default.
- W2035615036 hasConcept C70721500 @default.
- W2035615036 hasConcept C86803240 @default.
- W2035615036 hasConcept C89423630 @default.
- W2035615036 hasConceptScore W2035615036C171250308 @default.
- W2035615036 hasConceptScore W2035615036C181199279 @default.
- W2035615036 hasConceptScore W2035615036C185592680 @default.
- W2035615036 hasConceptScore W2035615036C192562407 @default.
- W2035615036 hasConceptScore W2035615036C2775941552 @default.
- W2035615036 hasConceptScore W2035615036C2776418720 @default.
- W2035615036 hasConceptScore W2035615036C2780841128 @default.
- W2035615036 hasConceptScore W2035615036C55493867 @default.
- W2035615036 hasConceptScore W2035615036C70721500 @default.
- W2035615036 hasConceptScore W2035615036C86803240 @default.
- W2035615036 hasConceptScore W2035615036C89423630 @default.
- W2035615036 hasIssue "15" @default.
- W2035615036 hasLocation W20356150361 @default.
- W2035615036 hasOpenAccess W2035615036 @default.
- W2035615036 hasPrimaryLocation W20356150361 @default.
- W2035615036 hasRelatedWork W1986125102 @default.
- W2035615036 hasRelatedWork W2062799029 @default.
- W2035615036 hasRelatedWork W2070232054 @default.
- W2035615036 hasRelatedWork W2089025702 @default.
- W2035615036 hasRelatedWork W2949911667 @default.
- W2035615036 hasRelatedWork W2952100114 @default.
- W2035615036 hasRelatedWork W2952309663 @default.
- W2035615036 hasRelatedWork W2952541249 @default.
- W2035615036 hasRelatedWork W2992231355 @default.
- W2035615036 hasRelatedWork W3037456415 @default.
- W2035615036 hasVolume "272" @default.
- W2035615036 isParatext "false" @default.
- W2035615036 isRetracted "false" @default.
- W2035615036 magId "2035615036" @default.
- W2035615036 workType "article" @default.