Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035733543> ?p ?o ?g. }
- W2035733543 endingPage "93" @default.
- W2035733543 startingPage "79" @default.
- W2035733543 abstract "We identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land-use water, are 0.25 and 2.5 mg/L NO3-N, respectively. The change in groundwater quality from pristine baseline to low–intensity impact around 1880 coincides with the start of the meat export industry. The change in groundwater quality from low to high intensity landuse impact around 1955 coincides with the start of industrialised agriculture. No elevated levels of phosphate, a main compound in agricultural fertilisers and, together with nitrogen, a trigger of algae blooms in lakes, were found in young groundwater. This implies that fertiliser phosphate from non-point sources is still retained in the soil and has not yet reached the saturated groundwater systems. The source of elevated PO4, observed only in old groundwater, is therefore due purely to natural geochemical factors." @default.
- W2035733543 created "2016-06-24" @default.
- W2035733543 creator A5003399101 @default.
- W2035733543 creator A5014423312 @default.
- W2035733543 date "2012-08-01" @default.
- W2035733543 modified "2023-10-15" @default.
- W2035733543 title "Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification – The National Groundwater Monitoring Programme of New Zealand" @default.
- W2035733543 cites W1506045498 @default.
- W2035733543 cites W1582149979 @default.
- W2035733543 cites W1585612743 @default.
- W2035733543 cites W1617773264 @default.
- W2035733543 cites W1845530686 @default.
- W2035733543 cites W1938981086 @default.
- W2035733543 cites W1944790895 @default.
- W2035733543 cites W1963891572 @default.
- W2035733543 cites W1972225489 @default.
- W2035733543 cites W1973878858 @default.
- W2035733543 cites W1989017547 @default.
- W2035733543 cites W1994612352 @default.
- W2035733543 cites W2001177075 @default.
- W2035733543 cites W2001620695 @default.
- W2035733543 cites W2008211975 @default.
- W2035733543 cites W2010530729 @default.
- W2035733543 cites W2020976013 @default.
- W2035733543 cites W2031133549 @default.
- W2035733543 cites W2035567065 @default.
- W2035733543 cites W2040168058 @default.
- W2035733543 cites W2048236994 @default.
- W2035733543 cites W2056965215 @default.
- W2035733543 cites W2060123769 @default.
- W2035733543 cites W2073266273 @default.
- W2035733543 cites W2077865655 @default.
- W2035733543 cites W2079688669 @default.
- W2035733543 cites W2082903678 @default.
- W2035733543 cites W2085991461 @default.
- W2035733543 cites W2089027483 @default.
- W2035733543 cites W2089274549 @default.
- W2035733543 cites W2089667468 @default.
- W2035733543 cites W2091055987 @default.
- W2035733543 cites W2092858137 @default.
- W2035733543 cites W2098902228 @default.
- W2035733543 cites W2113615865 @default.
- W2035733543 cites W2115652288 @default.
- W2035733543 cites W2120729000 @default.
- W2035733543 cites W2122051327 @default.
- W2035733543 cites W2137108412 @default.
- W2035733543 cites W2141386471 @default.
- W2035733543 cites W2143191422 @default.
- W2035733543 cites W2145905266 @default.
- W2035733543 cites W2156581219 @default.
- W2035733543 cites W2158722901 @default.
- W2035733543 cites W2163079451 @default.
- W2035733543 cites W2163456372 @default.
- W2035733543 doi "https://doi.org/10.1016/j.jhydrol.2012.06.010" @default.
- W2035733543 hasPublicationYear "2012" @default.
- W2035733543 type Work @default.
- W2035733543 sameAs 2035733543 @default.
- W2035733543 citedByCount "108" @default.
- W2035733543 countsByYear W20357335432012 @default.
- W2035733543 countsByYear W20357335432013 @default.
- W2035733543 countsByYear W20357335432014 @default.
- W2035733543 countsByYear W20357335432015 @default.
- W2035733543 countsByYear W20357335432016 @default.
- W2035733543 countsByYear W20357335432017 @default.
- W2035733543 countsByYear W20357335432018 @default.
- W2035733543 countsByYear W20357335432019 @default.
- W2035733543 countsByYear W20357335432020 @default.
- W2035733543 countsByYear W20357335432021 @default.
- W2035733543 countsByYear W20357335432022 @default.
- W2035733543 countsByYear W20357335432023 @default.
- W2035733543 crossrefType "journal-article" @default.
- W2035733543 hasAuthorship W2035733543A5003399101 @default.
- W2035733543 hasAuthorship W2035733543A5014423312 @default.
- W2035733543 hasConcept C111368507 @default.
- W2035733543 hasConcept C118416809 @default.
- W2035733543 hasConcept C12725497 @default.
- W2035733543 hasConcept C127313418 @default.
- W2035733543 hasConcept C187320778 @default.
- W2035733543 hasConcept C18903297 @default.
- W2035733543 hasConcept C2776384668 @default.
- W2035733543 hasConcept C2780797713 @default.
- W2035733543 hasConcept C39432304 @default.
- W2035733543 hasConcept C75622301 @default.
- W2035733543 hasConcept C76177295 @default.
- W2035733543 hasConcept C76886044 @default.
- W2035733543 hasConcept C86803240 @default.
- W2035733543 hasConceptScore W2035733543C111368507 @default.
- W2035733543 hasConceptScore W2035733543C118416809 @default.
- W2035733543 hasConceptScore W2035733543C12725497 @default.
- W2035733543 hasConceptScore W2035733543C127313418 @default.
- W2035733543 hasConceptScore W2035733543C187320778 @default.
- W2035733543 hasConceptScore W2035733543C18903297 @default.
- W2035733543 hasConceptScore W2035733543C2776384668 @default.
- W2035733543 hasConceptScore W2035733543C2780797713 @default.
- W2035733543 hasConceptScore W2035733543C39432304 @default.
- W2035733543 hasConceptScore W2035733543C75622301 @default.
- W2035733543 hasConceptScore W2035733543C76177295 @default.
- W2035733543 hasConceptScore W2035733543C76886044 @default.