Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035736469> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2035736469 endingPage "460" @default.
- W2035736469 startingPage "431" @default.
- W2035736469 abstract "We continue the study of generalized tractability initiated in our previous paper “Generalized tractability for multivariate problems, Part I: Linear tensor product problems and linear information”, J. Complex. 23:262–295, 2007. We study linear tensor product problems for which we can compute linear information which is given by arbitrary continuous linear functionals. We want to approximate an operator S d given as the d-fold tensor product of a compact linear operator S 1 for d=1,2,…, with ‖S 1‖=1 and S 1 having at least two positive singular values. Let n(ε,S d ) be the minimal number of information evaluations needed to approximate S d to within ε∈[0,1]. We study generalized tractability by verifying when n(ε,S d ) can be bounded by a multiple of a power of T(ε −1,d) for all (ε −1,d)∈Ω⊆[1,∞)×ℕ. Here, T is a tractability function which is non-decreasing in both variables and grows slower than exponentially to infinity. We study the exponent of tractability which is the smallest power of T(ε −1,d) whose multiple bounds n(ε,S d ). We also study weak tractability, i.e., when $lim_{varepsilon^{-1}+dtoinfty,(varepsilon^{-1},d)in varOmega}ln n(varepsilon,S_{d})/(varepsilon^{-1}+d)=0$ . In our previous paper, we studied generalized tractability for proper subsets Ω of [1,∞)×ℕ, whereas in this paper we take the unrestricted domain Ω unr=[1,∞)×ℕ. We consider the three cases for which we have only finitely many positive singular values of S 1, or they decay exponentially or polynomially fast. Weak tractability holds for these three cases, and for all linear tensor product problems for which the singular values of S 1 decay slightly faster than logarithmically. We provide necessary and sufficient conditions on the function T such that generalized tractability holds. These conditions are obtained in terms of the singular values of S 1 and mostly asymptotic properties of T. The tractability conditions tell us how fast T must go to infinity. It is known that T must go to infinity faster than polynomially. We show that generalized tractability is obtained for T(x,y)=x 1+ln y . We also study tractability functions T of product form, T(x,y)=f 1(x)f 2(x). Assume that a i =lim inf x→∞(ln ln f i (x))/(ln ln x) is finite for i=1,2. Then generalized tractability takes place iff $$a_{i}>1quadmbox{and}quad(a_{1}-1)(a_{2}-1)ge1,$$ and if (a 1−1)(a 2−1)=1 then we need to assume one more condition given in the paper. If (a 1−1)(a 2−1)>1 then the exponent of tractability is zero, and if (a 1−1)(a 2−1)=1 then the exponent of tractability is finite. It is interesting to add that for T being of the product form, the tractability conditions as well as the exponent of tractability depend only on the second singular eigenvalue of S 1 and they do not depend on the rate of their decay. Finally, we compare the results obtained in this paper for the unrestricted domain Ω unr with the results from our previous paper obtained for the restricted domain Ω res=[1,∞)×{1,2,…,d *}∪[1,ε 0 −1 )×ℕ with d *≥1 and ε 0∈(0,1). In general, the tractability results are quite different. We may have generalized tractability for the restricted domain and no generalized tractability for the unrestricted domain which is the case, for instance, for polynomial tractability T(x,y)=xy. We may also have generalized tractability for both domains with different or with the same exponents of tractability." @default.
- W2035736469 created "2016-06-24" @default.
- W2035736469 creator A5027293444 @default.
- W2035736469 creator A5054551768 @default.
- W2035736469 date "2009-03-14" @default.
- W2035736469 modified "2023-09-23" @default.
- W2035736469 title "Generalized Tractability for Multivariate Problems Part II: Linear Tensor Product Problems, Linear Information, and Unrestricted Tractability" @default.
- W2035736469 cites W1820164671 @default.
- W2035736469 cites W1980001337 @default.
- W2035736469 cites W1585207531 @default.
- W2035736469 doi "https://doi.org/10.1007/s10208-009-9044-6" @default.
- W2035736469 hasPublicationYear "2009" @default.
- W2035736469 type Work @default.
- W2035736469 sameAs 2035736469 @default.
- W2035736469 citedByCount "5" @default.
- W2035736469 countsByYear W20357364692014 @default.
- W2035736469 crossrefType "journal-article" @default.
- W2035736469 hasAuthorship W2035736469A5027293444 @default.
- W2035736469 hasAuthorship W2035736469A5054551768 @default.
- W2035736469 hasBestOaLocation W20357364692 @default.
- W2035736469 hasConcept C104317684 @default.
- W2035736469 hasConcept C114614502 @default.
- W2035736469 hasConcept C118615104 @default.
- W2035736469 hasConcept C134306372 @default.
- W2035736469 hasConcept C138885662 @default.
- W2035736469 hasConcept C155281189 @default.
- W2035736469 hasConcept C158448853 @default.
- W2035736469 hasConcept C17020691 @default.
- W2035736469 hasConcept C185592680 @default.
- W2035736469 hasConcept C202444582 @default.
- W2035736469 hasConcept C2524010 @default.
- W2035736469 hasConcept C2780388253 @default.
- W2035736469 hasConcept C3019018024 @default.
- W2035736469 hasConcept C33923547 @default.
- W2035736469 hasConcept C34388435 @default.
- W2035736469 hasConcept C36503486 @default.
- W2035736469 hasConcept C41895202 @default.
- W2035736469 hasConcept C49766605 @default.
- W2035736469 hasConcept C51255310 @default.
- W2035736469 hasConcept C55493867 @default.
- W2035736469 hasConcept C86339819 @default.
- W2035736469 hasConcept C90673727 @default.
- W2035736469 hasConceptScore W2035736469C104317684 @default.
- W2035736469 hasConceptScore W2035736469C114614502 @default.
- W2035736469 hasConceptScore W2035736469C118615104 @default.
- W2035736469 hasConceptScore W2035736469C134306372 @default.
- W2035736469 hasConceptScore W2035736469C138885662 @default.
- W2035736469 hasConceptScore W2035736469C155281189 @default.
- W2035736469 hasConceptScore W2035736469C158448853 @default.
- W2035736469 hasConceptScore W2035736469C17020691 @default.
- W2035736469 hasConceptScore W2035736469C185592680 @default.
- W2035736469 hasConceptScore W2035736469C202444582 @default.
- W2035736469 hasConceptScore W2035736469C2524010 @default.
- W2035736469 hasConceptScore W2035736469C2780388253 @default.
- W2035736469 hasConceptScore W2035736469C3019018024 @default.
- W2035736469 hasConceptScore W2035736469C33923547 @default.
- W2035736469 hasConceptScore W2035736469C34388435 @default.
- W2035736469 hasConceptScore W2035736469C36503486 @default.
- W2035736469 hasConceptScore W2035736469C41895202 @default.
- W2035736469 hasConceptScore W2035736469C49766605 @default.
- W2035736469 hasConceptScore W2035736469C51255310 @default.
- W2035736469 hasConceptScore W2035736469C55493867 @default.
- W2035736469 hasConceptScore W2035736469C86339819 @default.
- W2035736469 hasConceptScore W2035736469C90673727 @default.
- W2035736469 hasIssue "4" @default.
- W2035736469 hasLocation W20357364691 @default.
- W2035736469 hasLocation W20357364692 @default.
- W2035736469 hasOpenAccess W2035736469 @default.
- W2035736469 hasPrimaryLocation W20357364691 @default.
- W2035736469 hasRelatedWork W1964660066 @default.
- W2035736469 hasRelatedWork W1986624342 @default.
- W2035736469 hasRelatedWork W2009597102 @default.
- W2035736469 hasRelatedWork W2016891123 @default.
- W2035736469 hasRelatedWork W2228344414 @default.
- W2035736469 hasRelatedWork W2444353107 @default.
- W2035736469 hasRelatedWork W2464122418 @default.
- W2035736469 hasRelatedWork W2730797045 @default.
- W2035736469 hasRelatedWork W2798178534 @default.
- W2035736469 hasRelatedWork W2717213425 @default.
- W2035736469 hasVolume "9" @default.
- W2035736469 isParatext "false" @default.
- W2035736469 isRetracted "false" @default.
- W2035736469 magId "2035736469" @default.
- W2035736469 workType "article" @default.