Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035775476> ?p ?o ?g. }
- W2035775476 abstract "Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual‐energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X‐ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole‐array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures. Methods: In this paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full‐field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole‐array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast‐to‐noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole‐array interpolation method, and image with scatter correction using the authorsˈ algorithmic method. Results: The authorsˈ results show that the resultant background DE calcification signal can be reduced. The root‐mean‐square of background DE calcification signal of 1962 μ m with scatter‐uncorrected data was reduced to 194 μ m after scatter correction using the authorsˈ algorithmic method. The range of background DE calcification signals using scatter‐uncorrected data was reduced by 58% with scatter‐corrected data by algorithmic method. With the scatter‐correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μ m. Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole‐array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5‐cm‐thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness." @default.
- W2035775476 created "2016-06-24" @default.
- W2035775476 creator A5008171524 @default.
- W2035775476 creator A5013663929 @default.
- W2035775476 creator A5013704354 @default.
- W2035775476 creator A5013885426 @default.
- W2035775476 creator A5032790106 @default.
- W2035775476 creator A5079423135 @default.
- W2035775476 date "2013-10-25" @default.
- W2035775476 modified "2023-10-07" @default.
- W2035775476 title "Algorithmic scatter correction in dual-energy digital mammography" @default.
- W2035775476 cites W1963542776 @default.
- W2035775476 cites W1979207825 @default.
- W2035775476 cites W1989556435 @default.
- W2035775476 cites W1992788007 @default.
- W2035775476 cites W1995293645 @default.
- W2035775476 cites W1995798983 @default.
- W2035775476 cites W2009027871 @default.
- W2035775476 cites W2012394372 @default.
- W2035775476 cites W2017270704 @default.
- W2035775476 cites W2018098253 @default.
- W2035775476 cites W2023034751 @default.
- W2035775476 cites W2032931862 @default.
- W2035775476 cites W2056295790 @default.
- W2035775476 cites W2057407843 @default.
- W2035775476 cites W2063567835 @default.
- W2035775476 cites W2068371083 @default.
- W2035775476 cites W2072815790 @default.
- W2035775476 cites W2079224203 @default.
- W2035775476 cites W2080268132 @default.
- W2035775476 cites W2092702646 @default.
- W2035775476 cites W2113260670 @default.
- W2035775476 cites W2121293785 @default.
- W2035775476 cites W2128740046 @default.
- W2035775476 cites W2147539504 @default.
- W2035775476 doi "https://doi.org/10.1118/1.4826173" @default.
- W2035775476 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24320452" @default.
- W2035775476 hasPublicationYear "2013" @default.
- W2035775476 type Work @default.
- W2035775476 sameAs 2035775476 @default.
- W2035775476 citedByCount "7" @default.
- W2035775476 countsByYear W20357754762014 @default.
- W2035775476 countsByYear W20357754762015 @default.
- W2035775476 countsByYear W20357754762016 @default.
- W2035775476 countsByYear W20357754762017 @default.
- W2035775476 countsByYear W20357754762020 @default.
- W2035775476 countsByYear W20357754762023 @default.
- W2035775476 crossrefType "journal-article" @default.
- W2035775476 hasAuthorship W2035775476A5008171524 @default.
- W2035775476 hasAuthorship W2035775476A5013663929 @default.
- W2035775476 hasAuthorship W2035775476A5013704354 @default.
- W2035775476 hasAuthorship W2035775476A5013885426 @default.
- W2035775476 hasAuthorship W2035775476A5032790106 @default.
- W2035775476 hasAuthorship W2035775476A5079423135 @default.
- W2035775476 hasConcept C104293457 @default.
- W2035775476 hasConcept C105795698 @default.
- W2035775476 hasConcept C115961682 @default.
- W2035775476 hasConcept C120665830 @default.
- W2035775476 hasConcept C121332964 @default.
- W2035775476 hasConcept C121608353 @default.
- W2035775476 hasConcept C126322002 @default.
- W2035775476 hasConcept C137800194 @default.
- W2035775476 hasConcept C154945302 @default.
- W2035775476 hasConcept C160633673 @default.
- W2035775476 hasConcept C186370098 @default.
- W2035775476 hasConcept C2776700484 @default.
- W2035775476 hasConcept C2780472235 @default.
- W2035775476 hasConcept C2781281974 @default.
- W2035775476 hasConcept C33923547 @default.
- W2035775476 hasConcept C41008148 @default.
- W2035775476 hasConcept C530470458 @default.
- W2035775476 hasConcept C55020928 @default.
- W2035775476 hasConcept C71924100 @default.
- W2035775476 hasConceptScore W2035775476C104293457 @default.
- W2035775476 hasConceptScore W2035775476C105795698 @default.
- W2035775476 hasConceptScore W2035775476C115961682 @default.
- W2035775476 hasConceptScore W2035775476C120665830 @default.
- W2035775476 hasConceptScore W2035775476C121332964 @default.
- W2035775476 hasConceptScore W2035775476C121608353 @default.
- W2035775476 hasConceptScore W2035775476C126322002 @default.
- W2035775476 hasConceptScore W2035775476C137800194 @default.
- W2035775476 hasConceptScore W2035775476C154945302 @default.
- W2035775476 hasConceptScore W2035775476C160633673 @default.
- W2035775476 hasConceptScore W2035775476C186370098 @default.
- W2035775476 hasConceptScore W2035775476C2776700484 @default.
- W2035775476 hasConceptScore W2035775476C2780472235 @default.
- W2035775476 hasConceptScore W2035775476C2781281974 @default.
- W2035775476 hasConceptScore W2035775476C33923547 @default.
- W2035775476 hasConceptScore W2035775476C41008148 @default.
- W2035775476 hasConceptScore W2035775476C530470458 @default.
- W2035775476 hasConceptScore W2035775476C55020928 @default.
- W2035775476 hasConceptScore W2035775476C71924100 @default.
- W2035775476 hasFunder F4320321001 @default.
- W2035775476 hasIssue "11" @default.
- W2035775476 hasLocation W20357754761 @default.
- W2035775476 hasLocation W20357754762 @default.
- W2035775476 hasOpenAccess W2035775476 @default.
- W2035775476 hasPrimaryLocation W20357754761 @default.
- W2035775476 hasRelatedWork W2000845075 @default.
- W2035775476 hasRelatedWork W2011788222 @default.