Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035843433> ?p ?o ?g. }
- W2035843433 endingPage "78" @default.
- W2035843433 startingPage "61" @default.
- W2035843433 abstract "Even in the absence of an experimental effect, functional magnetic resonance imaging (fMRI) time series generally demonstrate serial dependence. This colored noise or endogenous autocorrelation typically has disproportionate spectral power at low frequencies, i.e., its spectrum is (1/f)-like. Various pre-whitening and pre-coloring strategies have been proposed to make valid inference on standardised test statistics estimated by time series regression in this context of residually autocorrelated errors. Here we introduce a new method based on random permutation after orthogonal transformation of the observed time series to the wavelet domain. This scheme exploits the general whitening or decorrelating property of the discrete wavelet transform and is implemented using a Daubechies wavelet with four vanishing moments to ensure exchangeability of wavelet coefficients within each scale of decomposition. For (1/f)-like or fractal noises, e.g., realisations of fractional Brownian motion (fBm) parameterised by Hurst exponent 0 < H < 1, this resampling algorithm exactly preserves wavelet-based estimates of the second order stochastic properties of the (possibly nonstationary) time series. Performance of the method is assessed empirically using (1/f)-like noise simulated by multiple physical relaxation processes, and experimental fMRI data. Nominal type 1 error control in brain activation mapping is demonstrated by analysis of 13 images acquired under null or resting conditions. Compared to autoregressive pre-whitening methods for computational inference, a key advantage of wavelet resampling seems to be its robustness in activation mapping of experimental fMRI data acquired at 3 Tesla field strength. We conclude that wavelet resampling may be a generally useful method for inference on naturally complex time series." @default.
- W2035843433 created "2016-06-24" @default.
- W2035843433 creator A5002961895 @default.
- W2035843433 creator A5005530904 @default.
- W2035843433 creator A5008136365 @default.
- W2035843433 creator A5009778442 @default.
- W2035843433 creator A5025660060 @default.
- W2035843433 creator A5031862864 @default.
- W2035843433 creator A5041538919 @default.
- W2035843433 creator A5081316808 @default.
- W2035843433 date "2001-01-01" @default.
- W2035843433 modified "2023-10-15" @default.
- W2035843433 title "Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains" @default.
- W2035843433 cites W1547158606 @default.
- W2035843433 cites W1594506861 @default.
- W2035843433 cites W1964777591 @default.
- W2035843433 cites W1971536848 @default.
- W2035843433 cites W1977073388 @default.
- W2035843433 cites W1981446844 @default.
- W2035843433 cites W2007504260 @default.
- W2035843433 cites W2018338408 @default.
- W2035843433 cites W2020548440 @default.
- W2035843433 cites W2021589053 @default.
- W2035843433 cites W2029293929 @default.
- W2035843433 cites W2031753087 @default.
- W2035843433 cites W2035421678 @default.
- W2035843433 cites W2040582417 @default.
- W2035843433 cites W2041811624 @default.
- W2035843433 cites W2042596133 @default.
- W2035843433 cites W2044272323 @default.
- W2035843433 cites W2054121225 @default.
- W2035843433 cites W2058713030 @default.
- W2035843433 cites W2059982399 @default.
- W2035843433 cites W2061435448 @default.
- W2035843433 cites W2062962812 @default.
- W2035843433 cites W2072647566 @default.
- W2035843433 cites W2077292034 @default.
- W2035843433 cites W2090399446 @default.
- W2035843433 cites W2094243598 @default.
- W2035843433 cites W2095104776 @default.
- W2035843433 cites W2095827013 @default.
- W2035843433 cites W2098914003 @default.
- W2035843433 cites W2099660465 @default.
- W2035843433 cites W2101865311 @default.
- W2035843433 cites W2117221846 @default.
- W2035843433 cites W2124187669 @default.
- W2035843433 cites W2124847520 @default.
- W2035843433 cites W2132984323 @default.
- W2035843433 cites W2145617351 @default.
- W2035843433 cites W2159718141 @default.
- W2035843433 cites W2162189034 @default.
- W2035843433 cites W2167558038 @default.
- W2035843433 cites W2171652727 @default.
- W2035843433 cites W2971002144 @default.
- W2035843433 cites W3106889297 @default.
- W2035843433 cites W4210572675 @default.
- W2035843433 cites W4242212377 @default.
- W2035843433 cites W4246587917 @default.
- W2035843433 cites W4298872162 @default.
- W2035843433 cites W620309529 @default.
- W2035843433 doi "https://doi.org/10.1002/1097-0193(200102)12:2<61::aid-hbm1004>3.0.co;2-w" @default.
- W2035843433 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6871881" @default.
- W2035843433 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11169871" @default.
- W2035843433 hasPublicationYear "2001" @default.
- W2035843433 type Work @default.
- W2035843433 sameAs 2035843433 @default.
- W2035843433 citedByCount "576" @default.
- W2035843433 countsByYear W20358434332012 @default.
- W2035843433 countsByYear W20358434332013 @default.
- W2035843433 countsByYear W20358434332014 @default.
- W2035843433 countsByYear W20358434332015 @default.
- W2035843433 countsByYear W20358434332016 @default.
- W2035843433 countsByYear W20358434332017 @default.
- W2035843433 countsByYear W20358434332018 @default.
- W2035843433 countsByYear W20358434332019 @default.
- W2035843433 countsByYear W20358434332020 @default.
- W2035843433 countsByYear W20358434332021 @default.
- W2035843433 countsByYear W20358434332022 @default.
- W2035843433 countsByYear W20358434332023 @default.
- W2035843433 crossrefType "journal-article" @default.
- W2035843433 hasAuthorship W2035843433A5002961895 @default.
- W2035843433 hasAuthorship W2035843433A5005530904 @default.
- W2035843433 hasAuthorship W2035843433A5008136365 @default.
- W2035843433 hasAuthorship W2035843433A5009778442 @default.
- W2035843433 hasAuthorship W2035843433A5025660060 @default.
- W2035843433 hasAuthorship W2035843433A5031862864 @default.
- W2035843433 hasAuthorship W2035843433A5041538919 @default.
- W2035843433 hasAuthorship W2035843433A5081316808 @default.
- W2035843433 hasBestOaLocation W20358434332 @default.
- W2035843433 hasConcept C105795698 @default.
- W2035843433 hasConcept C11413529 @default.
- W2035843433 hasConcept C150921843 @default.
- W2035843433 hasConcept C153180895 @default.
- W2035843433 hasConcept C154945302 @default.
- W2035843433 hasConcept C159877910 @default.
- W2035843433 hasConcept C196216189 @default.
- W2035843433 hasConcept C2779855323 @default.
- W2035843433 hasConcept C33923547 @default.