Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035872871> ?p ?o ?g. }
- W2035872871 endingPage "67" @default.
- W2035872871 startingPage "53" @default.
- W2035872871 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 465:53-67 (2012) - DOI: https://doi.org/10.3354/meps09920 Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis Marleen De Troch1,*, Pascal Boeckx2, Clio Cnudde1, Dirk Van Gansbeke1, Ann Vanreusel1, Magda Vincx1, Maria José Caramujo3 1Marine Biology, Krijgslaan 281/S8, and 2Laboratory of Applied Physical Chemistry (ISOFYS), Coupure Links 653, Ghent University, Gent 9000, Belgium 3Centre of Environmental Biology, Faculty of Sciences, University of Lisbon, Campo Grande C2, Lisbon 1749-016, Portugal *Email: marleen.detroch@ugent.be ABSTRACT: Polyunsaturated fatty acids (PUFA) are essential compounds that can limit the productivity of primary consumers in aquatic food webs, where the efficiency in energy transfer at the plant–animal interface has been related to food quality in terms of fatty acids (FA). At this interface, copepods play a pivotal role both as consumers of primary production and as a food source for higher trophic levels. Understanding the role of grazing copepods in the transfer of FA is therefore essential for our knowledge on the overall functioning of marine ecosystems. The harpacticoid copepod Microarthridion littorale grazed for 9 d on 13C labelled diatoms and bacteria in the laboratory and was then subjected to FA-specific stable isotope analysis. The objective of this analysis was to inspect the copepod’s ability to bioconvert short-chain FA (SC-PUFA, <20 carbons) into long-chain PUFA (LC-PUFA, ≥20 carbons) and the FA involved in the potential bioconversion pathways. Diatoms and bacteria were chosen as test diets because of their different FA composition, i.e. docosahexaenoic acid (DHA; 22:6ω3) was absent in the bacteria, and eicosapentaenoic acid (EPA; 20:5ω3) was <5% of the total FA weight of bacteria. The presence of labelled DHA in copepods feeding on bacteria showed that this PUFA must have been converted from other FA, possibly EPA. The FA composition of copepods in the laboratory was different from that of field copepods, which suggests the availability of more food sources in the field than those offered in the experiment. The weight proportion of C18 FA decreased in copepods feeding on either bacteria or diatoms relative to field copepods, while the proportion of both EPA and DHA increased. In contrast to planktonic calanoid copepods that have limited ability to bioconvert FA, benthic harpacticoid copepods apparently developed the ability to elongate FA and to exploit niches with poor quality food. Moreover, by improving the quality of the food they graze upon, especially in terms of EPA and DHA, harpacticoid copepods upgrade the nutritive value of food available to the higher trophic levels in marine food webs. KEY WORDS: Fatty acids · Bioconversion · Harpacticoid copepods · Compound-specific stable isotope analysis Full text in pdf format PreviousNextCite this article as: De Troch M, Boeckx P, Cnudde C, Van Gansbeke D, Vanreusel A, Vincx M, Caramujo MJ (2012) Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis. Mar Ecol Prog Ser 465:53-67. https://doi.org/10.3354/meps09920 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 465. Online publication date: September 28, 2012 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2012 Inter-Research." @default.
- W2035872871 created "2016-06-24" @default.
- W2035872871 creator A5000589841 @default.
- W2035872871 creator A5007205831 @default.
- W2035872871 creator A5012160633 @default.
- W2035872871 creator A5033142900 @default.
- W2035872871 creator A5060178817 @default.
- W2035872871 creator A5069005304 @default.
- W2035872871 creator A5086007746 @default.
- W2035872871 date "2012-09-28" @default.
- W2035872871 modified "2023-09-25" @default.
- W2035872871 title "Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis" @default.
- W2035872871 cites W124340556 @default.
- W2035872871 cites W1481623261 @default.
- W2035872871 cites W1482940750 @default.
- W2035872871 cites W1510818592 @default.
- W2035872871 cites W173017475 @default.
- W2035872871 cites W1935393389 @default.
- W2035872871 cites W1969206921 @default.
- W2035872871 cites W1973799695 @default.
- W2035872871 cites W1985877159 @default.
- W2035872871 cites W1998923690 @default.
- W2035872871 cites W2000275667 @default.
- W2035872871 cites W2001922109 @default.
- W2035872871 cites W2003641180 @default.
- W2035872871 cites W2004775480 @default.
- W2035872871 cites W2007256899 @default.
- W2035872871 cites W2007574495 @default.
- W2035872871 cites W2015231214 @default.
- W2035872871 cites W2016660821 @default.
- W2035872871 cites W2016927947 @default.
- W2035872871 cites W2017099774 @default.
- W2035872871 cites W2017322631 @default.
- W2035872871 cites W2022647440 @default.
- W2035872871 cites W2033080467 @default.
- W2035872871 cites W2035855049 @default.
- W2035872871 cites W2039188497 @default.
- W2035872871 cites W2041057654 @default.
- W2035872871 cites W2053470935 @default.
- W2035872871 cites W2056449733 @default.
- W2035872871 cites W2056516297 @default.
- W2035872871 cites W2058218736 @default.
- W2035872871 cites W2058932214 @default.
- W2035872871 cites W2062300193 @default.
- W2035872871 cites W2067601855 @default.
- W2035872871 cites W2070290509 @default.
- W2035872871 cites W2071415447 @default.
- W2035872871 cites W2075546895 @default.
- W2035872871 cites W2075915084 @default.
- W2035872871 cites W2079314110 @default.
- W2035872871 cites W2081104534 @default.
- W2035872871 cites W2081651385 @default.
- W2035872871 cites W2085644137 @default.
- W2035872871 cites W2088773210 @default.
- W2035872871 cites W2089620464 @default.
- W2035872871 cites W2091369149 @default.
- W2035872871 cites W2099455215 @default.
- W2035872871 cites W2101254098 @default.
- W2035872871 cites W2105997475 @default.
- W2035872871 cites W2108786489 @default.
- W2035872871 cites W2109420618 @default.
- W2035872871 cites W2109484451 @default.
- W2035872871 cites W2110021376 @default.
- W2035872871 cites W2115248090 @default.
- W2035872871 cites W2120759308 @default.
- W2035872871 cites W2129939060 @default.
- W2035872871 cites W2135799584 @default.
- W2035872871 cites W2135908055 @default.
- W2035872871 cites W2142659252 @default.
- W2035872871 cites W2145369134 @default.
- W2035872871 cites W2157260192 @default.
- W2035872871 cites W2158232230 @default.
- W2035872871 cites W2161108162 @default.
- W2035872871 cites W2161947453 @default.
- W2035872871 cites W2175737358 @default.
- W2035872871 cites W2195655950 @default.
- W2035872871 cites W2239590894 @default.
- W2035872871 cites W2333553918 @default.
- W2035872871 cites W2334579821 @default.
- W2035872871 cites W4231797369 @default.
- W2035872871 cites W4233615550 @default.
- W2035872871 cites W4252702985 @default.
- W2035872871 cites W616839358 @default.
- W2035872871 doi "https://doi.org/10.3354/meps09920" @default.
- W2035872871 hasPublicationYear "2012" @default.
- W2035872871 type Work @default.
- W2035872871 sameAs 2035872871 @default.
- W2035872871 citedByCount "113" @default.
- W2035872871 countsByYear W20358728712012 @default.
- W2035872871 countsByYear W20358728712013 @default.
- W2035872871 countsByYear W20358728712014 @default.
- W2035872871 countsByYear W20358728712015 @default.
- W2035872871 countsByYear W20358728712016 @default.
- W2035872871 countsByYear W20358728712017 @default.
- W2035872871 countsByYear W20358728712018 @default.
- W2035872871 countsByYear W20358728712019 @default.
- W2035872871 countsByYear W20358728712020 @default.
- W2035872871 countsByYear W20358728712021 @default.