Matches in SemOpenAlex for { <https://semopenalex.org/work/W2035992337> ?p ?o ?g. }
- W2035992337 endingPage "239" @default.
- W2035992337 startingPage "228" @default.
- W2035992337 abstract "Cell death is a common and reproducible feature of the development of many mammalian tissues/organs. Two well-known examples of programmed cell death (PCD) are the cell deaths associated with fusion of the neural folds and removal of interdigital mesenchymal cells during digit formation. Like normal development, abnormal development is also associated with increased cell death in tissues/organs that develop abnormally after exposure to a wide variety of teratogens. At least in some instances, teratogens induce cell death in areas of normal PCD, suggesting that there is a link between programmed and teratogen-induced cell death. Although researchers recognized early on that cell death is an integral part of both normal and abnormal development, little was known about the mechanisms of cell death. In 1972, Kerr et al. ('72) showed conclusively that cell deaths, induced in a variety of contexts, followed a reproducible pattern, which they termed apoptosis. The next breakthrough came in the 1980s when Horvitz and his colleagues identified specific cell death genes (ced) that controlled PCD in the roundworm, Caenorhabditis elegans (C. elegans). Identification of ced genes in the roundworm quickly led to the isolation of their mammalian homologues. Subsequent research in the 1990s led to the identification of a cadre of proteins controlling cell death in mammals, i.e., receptors/ligands, caspases, cytochrome c, Apaf-1, Bcl-2 family proteins, and IAPs. Two major pathways of apoptosis have now been elucidated, the receptor-mediated and the mitochondrial apoptotic pathways. The latter pathway, induced by a wide variety of toxic agents, is activated by the release of cytochrome c from mitochondria. Cytochrome c then facilitates the activation of a caspase cascade involving caspase-9 and -3. Activation of these caspases results in the cleavage of a variety of cellular proteins leading to the orderly demise of the cell. Work from my laboratory in the last 5 years has shown that teratogens, such as hyperthermia, 4-hydroperoxycyclophosphamide, and staurosporine, induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway, i.e., mitochondrial release of cytochrome c, activation of caspase-9 and -3, inactivation of poly (ADP-ribose) polymerase (PARP), and systematic degradation of DNA. Our work, as well as the work of others, has also shown that different tissues within the early post implantation mammalian embryo are differentially sensitive to the cell death inducing potential of teratogens, from exquisite sensitivity of cells in the developing central nervous system to complete resistance of cells in the developing heart. More importantly, we have shown that the resistance of heart cells is directly related to the failure to activate the mitochondrial apoptotic pathway in these cells. Thus, whether a cell dies in response to a teratogen and therefore contributes to the pathogenesis culminating in birth defects, depends, at least in part, by the cell's ability to regulate the mitochondrial apoptotic pathway. Future research aimed at understanding this regulation should provide insight not only into the mechanism of teratogen-induced cell death but also the role of cell death in the genesis of birth defects." @default.
- W2035992337 created "2016-06-24" @default.
- W2035992337 creator A5010768681 @default.
- W2035992337 date "2002-04-11" @default.
- W2035992337 modified "2023-09-23" @default.
- W2035992337 title "2001 Warkany lecture: To die or not to die, the role of apoptosis in normal and abnormal mammalian development" @default.
- W2035992337 cites W1557686543 @default.
- W2035992337 cites W1745634660 @default.
- W2035992337 cites W1935109912 @default.
- W2035992337 cites W1969331809 @default.
- W2035992337 cites W1973254311 @default.
- W2035992337 cites W1976339097 @default.
- W2035992337 cites W1979995768 @default.
- W2035992337 cites W1980333973 @default.
- W2035992337 cites W1984944970 @default.
- W2035992337 cites W1986006829 @default.
- W2035992337 cites W1987785848 @default.
- W2035992337 cites W1989952069 @default.
- W2035992337 cites W2000352412 @default.
- W2035992337 cites W2007510875 @default.
- W2035992337 cites W2013583594 @default.
- W2035992337 cites W2036822121 @default.
- W2035992337 cites W2037829337 @default.
- W2035992337 cites W2049608177 @default.
- W2035992337 cites W2049873418 @default.
- W2035992337 cites W2051658957 @default.
- W2035992337 cites W2052853635 @default.
- W2035992337 cites W2056528158 @default.
- W2035992337 cites W2074678011 @default.
- W2035992337 cites W2082624222 @default.
- W2035992337 cites W2083560313 @default.
- W2035992337 cites W2083906562 @default.
- W2035992337 cites W2084609653 @default.
- W2035992337 cites W2085601531 @default.
- W2035992337 cites W2088381214 @default.
- W2035992337 cites W2092603433 @default.
- W2035992337 cites W2098975407 @default.
- W2035992337 cites W2104543679 @default.
- W2035992337 cites W2113239938 @default.
- W2035992337 cites W2120473562 @default.
- W2035992337 cites W2120492514 @default.
- W2035992337 cites W2140955159 @default.
- W2035992337 cites W2143772496 @default.
- W2035992337 cites W2150912846 @default.
- W2035992337 cites W2154745705 @default.
- W2035992337 cites W2165721689 @default.
- W2035992337 cites W2167490100 @default.
- W2035992337 cites W2316940481 @default.
- W2035992337 cites W4239718055 @default.
- W2035992337 cites W4319590510 @default.
- W2035992337 doi "https://doi.org/10.1002/tera.10049" @default.
- W2035992337 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11967922" @default.
- W2035992337 hasPublicationYear "2002" @default.
- W2035992337 type Work @default.
- W2035992337 sameAs 2035992337 @default.
- W2035992337 citedByCount "82" @default.
- W2035992337 countsByYear W20359923372012 @default.
- W2035992337 countsByYear W20359923372013 @default.
- W2035992337 countsByYear W20359923372014 @default.
- W2035992337 countsByYear W20359923372016 @default.
- W2035992337 countsByYear W20359923372018 @default.
- W2035992337 countsByYear W20359923372019 @default.
- W2035992337 countsByYear W20359923372020 @default.
- W2035992337 countsByYear W20359923372021 @default.
- W2035992337 countsByYear W20359923372023 @default.
- W2035992337 crossrefType "journal-article" @default.
- W2035992337 hasAuthorship W2035992337A5010768681 @default.
- W2035992337 hasConcept C104317684 @default.
- W2035992337 hasConcept C1491633281 @default.
- W2035992337 hasConcept C163952510 @default.
- W2035992337 hasConcept C189014844 @default.
- W2035992337 hasConcept C190283241 @default.
- W2035992337 hasConcept C31573885 @default.
- W2035992337 hasConcept C54355233 @default.
- W2035992337 hasConcept C62112901 @default.
- W2035992337 hasConcept C86339819 @default.
- W2035992337 hasConcept C86803240 @default.
- W2035992337 hasConcept C95444343 @default.
- W2035992337 hasConcept C98424977 @default.
- W2035992337 hasConceptScore W2035992337C104317684 @default.
- W2035992337 hasConceptScore W2035992337C1491633281 @default.
- W2035992337 hasConceptScore W2035992337C163952510 @default.
- W2035992337 hasConceptScore W2035992337C189014844 @default.
- W2035992337 hasConceptScore W2035992337C190283241 @default.
- W2035992337 hasConceptScore W2035992337C31573885 @default.
- W2035992337 hasConceptScore W2035992337C54355233 @default.
- W2035992337 hasConceptScore W2035992337C62112901 @default.
- W2035992337 hasConceptScore W2035992337C86339819 @default.
- W2035992337 hasConceptScore W2035992337C86803240 @default.
- W2035992337 hasConceptScore W2035992337C95444343 @default.
- W2035992337 hasConceptScore W2035992337C98424977 @default.
- W2035992337 hasIssue "5" @default.
- W2035992337 hasLocation W20359923371 @default.
- W2035992337 hasLocation W20359923372 @default.
- W2035992337 hasOpenAccess W2035992337 @default.
- W2035992337 hasPrimaryLocation W20359923371 @default.
- W2035992337 hasRelatedWork W2017532292 @default.
- W2035992337 hasRelatedWork W2036457027 @default.