Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036064669> ?p ?o ?g. }
- W2036064669 endingPage "1183" @default.
- W2036064669 startingPage "1171" @default.
- W2036064669 abstract "Abstract In this paper, a dynamic nonlinear model of a Solid Oxide Fuel Cell (SOFC) is determined using an ensemble of Neural Networks (NNs). The Component NNs (CNNs) of the ensemble are trained using the Levenberg–Marquardt (LM) algorithm. The ensemble of NNs is optimized using the hybrid adaptive Particle Swarm Optimization (PSO) with a newly developed Negative Correlation Learning (NCL) method. In this work, PSO has been used to pre-train CNNs before the LM algorithm is employed. In this way, we will get rid of the shortcomings of both of these two methods; PSO has a global vision but it cannot find the global minimum precisely while LM can generally find this minimum but needs a good starting point near the global minimum. An ensemble of NNs shows greater generalization performance compared to a single neural network. In NCL, all the CNNs in the ensemble are trained simultaneously and interactively using the correlation penalty terms in their error functions. Instead of constructing unbiased individual networks whose errors are uncorrelated, NCL can generate negatively correlated networks to boost specialization and cooperation among the individual networks. NNs are excellent tools to model complex nonlinear dynamic systems and can be useful for simulation of SOFC. The results indicated that the SOFC outputs can be accurately estimated using the trained model in this work." @default.
- W2036064669 created "2016-06-24" @default.
- W2036064669 creator A5000419788 @default.
- W2036064669 creator A5040511474 @default.
- W2036064669 creator A5086152749 @default.
- W2036064669 date "2014-11-01" @default.
- W2036064669 modified "2023-10-18" @default.
- W2036064669 title "Modeling of a solid oxide fuel cell power plant using an ensemble of neural networks based on a combination of the adaptive particle swarm optimization and Levenberg–Marquardt algorithms" @default.
- W2036064669 cites W1973128160 @default.
- W2036064669 cites W1985773453 @default.
- W2036064669 cites W1988664775 @default.
- W2036064669 cites W1989936307 @default.
- W2036064669 cites W1995107449 @default.
- W2036064669 cites W2005349364 @default.
- W2036064669 cites W2007567623 @default.
- W2036064669 cites W2012684023 @default.
- W2036064669 cites W2013153545 @default.
- W2036064669 cites W2022150296 @default.
- W2036064669 cites W2022747340 @default.
- W2036064669 cites W2025797714 @default.
- W2036064669 cites W2025834011 @default.
- W2036064669 cites W2039214527 @default.
- W2036064669 cites W2045059098 @default.
- W2036064669 cites W2050704781 @default.
- W2036064669 cites W2051680981 @default.
- W2036064669 cites W2061119986 @default.
- W2036064669 cites W2070508226 @default.
- W2036064669 cites W2079300193 @default.
- W2036064669 cites W2083874789 @default.
- W2036064669 cites W2083955401 @default.
- W2036064669 cites W2093604575 @default.
- W2036064669 cites W2093666796 @default.
- W2036064669 cites W2100128988 @default.
- W2036064669 cites W2150884987 @default.
- W2036064669 cites W2154639200 @default.
- W2036064669 cites W2168964662 @default.
- W2036064669 cites W2329317836 @default.
- W2036064669 cites W2505801949 @default.
- W2036064669 cites W4233490749 @default.
- W2036064669 cites W4249028950 @default.
- W2036064669 cites W4376595336 @default.
- W2036064669 doi "https://doi.org/10.1016/j.jngse.2014.07.004" @default.
- W2036064669 hasPublicationYear "2014" @default.
- W2036064669 type Work @default.
- W2036064669 sameAs 2036064669 @default.
- W2036064669 citedByCount "17" @default.
- W2036064669 countsByYear W20360646692015 @default.
- W2036064669 countsByYear W20360646692016 @default.
- W2036064669 countsByYear W20360646692017 @default.
- W2036064669 countsByYear W20360646692018 @default.
- W2036064669 countsByYear W20360646692020 @default.
- W2036064669 countsByYear W20360646692021 @default.
- W2036064669 countsByYear W20360646692022 @default.
- W2036064669 countsByYear W20360646692023 @default.
- W2036064669 crossrefType "journal-article" @default.
- W2036064669 hasAuthorship W2036064669A5000419788 @default.
- W2036064669 hasAuthorship W2036064669A5040511474 @default.
- W2036064669 hasAuthorship W2036064669A5086152749 @default.
- W2036064669 hasConcept C11413529 @default.
- W2036064669 hasConcept C121332964 @default.
- W2036064669 hasConcept C122357587 @default.
- W2036064669 hasConcept C126255220 @default.
- W2036064669 hasConcept C127413603 @default.
- W2036064669 hasConcept C154945302 @default.
- W2036064669 hasConcept C163258240 @default.
- W2036064669 hasConcept C181335050 @default.
- W2036064669 hasConcept C33923547 @default.
- W2036064669 hasConcept C41008148 @default.
- W2036064669 hasConcept C50644808 @default.
- W2036064669 hasConcept C62520636 @default.
- W2036064669 hasConcept C85617194 @default.
- W2036064669 hasConcept C87578567 @default.
- W2036064669 hasConceptScore W2036064669C11413529 @default.
- W2036064669 hasConceptScore W2036064669C121332964 @default.
- W2036064669 hasConceptScore W2036064669C122357587 @default.
- W2036064669 hasConceptScore W2036064669C126255220 @default.
- W2036064669 hasConceptScore W2036064669C127413603 @default.
- W2036064669 hasConceptScore W2036064669C154945302 @default.
- W2036064669 hasConceptScore W2036064669C163258240 @default.
- W2036064669 hasConceptScore W2036064669C181335050 @default.
- W2036064669 hasConceptScore W2036064669C33923547 @default.
- W2036064669 hasConceptScore W2036064669C41008148 @default.
- W2036064669 hasConceptScore W2036064669C50644808 @default.
- W2036064669 hasConceptScore W2036064669C62520636 @default.
- W2036064669 hasConceptScore W2036064669C85617194 @default.
- W2036064669 hasConceptScore W2036064669C87578567 @default.
- W2036064669 hasLocation W20360646691 @default.
- W2036064669 hasOpenAccess W2036064669 @default.
- W2036064669 hasPrimaryLocation W20360646691 @default.
- W2036064669 hasRelatedWork W10394924 @default.
- W2036064669 hasRelatedWork W1601689643 @default.
- W2036064669 hasRelatedWork W2135372907 @default.
- W2036064669 hasRelatedWork W2184956897 @default.
- W2036064669 hasRelatedWork W2312228731 @default.
- W2036064669 hasRelatedWork W2312396909 @default.
- W2036064669 hasRelatedWork W2758703592 @default.
- W2036064669 hasRelatedWork W2965421953 @default.
- W2036064669 hasRelatedWork W3040987796 @default.