Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036093555> ?p ?o ?g. }
- W2036093555 endingPage "178" @default.
- W2036093555 startingPage "161" @default.
- W2036093555 abstract "In this paper, a strategy for developing self-learning finite element codes is presented. At the heart of these codes is a neural network based constitutive model (NNCM). In contrast to the normal practice of training neural networks for constitutive models with the data from homogenous material tests, training is accomplished here with stresses and strains at certain calibrating points in tests on structures where the stress/strain states are not homogenous. This strategy has a distinct advantage since a considerable effort is devoted by the experimentalists to achieve as homogenous state of stress/strain as possible. In many situations this is impractical for many reasons such as the samples being too small, precious or may require expensive methods of preparation.The methodology of self-learning finite element codes is illustrated by the solution of two heuristic boundary value problems. The first is a two-bar structure in which one of the bars is made of an ideally plastic or a strain softening material whilst the second bar is linear elastic. Computed load–deformation data of the structure are used for training of the neural network based constitutive model (NNCM) for the non-linear bar. It is shown that NNCM is capable of simulating the ideal plastic as well as the strain softening behaviour. The second problem simulates a plane stress panel of linear elastic material subjected to a concentrated vertical load at the top. The displacements at a number of monitoring points are used to train a NNCM. It is shown that the choice of the position of monitoring points affects the training programme and consequently the convergence of the NNCM predictions to standard solutions. The position of the load is then changed to demonstrate that the NNCM has been adequately trained to be able to perform analysis of any boundary value problem in which the material law corresponds to the trained NNCM. It is believed that the proposed technique of self-learning finite element codes will make a crucial impact on the methodology of engineering analyses and condition monitoring of structures." @default.
- W2036093555 created "2016-06-24" @default.
- W2036093555 creator A5031253753 @default.
- W2036093555 creator A5076010762 @default.
- W2036093555 date "2000-10-01" @default.
- W2036093555 modified "2023-09-30" @default.
- W2036093555 title "On self-learning finite element codes based on monitored response of structures" @default.
- W2036093555 cites W1488134840 @default.
- W2036093555 cites W1970792895 @default.
- W2036093555 cites W1986486385 @default.
- W2036093555 cites W2004320657 @default.
- W2036093555 cites W2017066023 @default.
- W2036093555 cites W2021958191 @default.
- W2036093555 cites W2023553877 @default.
- W2036093555 cites W2030515332 @default.
- W2036093555 cites W2034636143 @default.
- W2036093555 cites W2035491271 @default.
- W2036093555 cites W2051835934 @default.
- W2036093555 cites W2057559341 @default.
- W2036093555 cites W2065469607 @default.
- W2036093555 cites W2083275659 @default.
- W2036093555 cites W2087567366 @default.
- W2036093555 cites W2171409491 @default.
- W2036093555 doi "https://doi.org/10.1016/s0266-352x(00)00016-1" @default.
- W2036093555 hasPublicationYear "2000" @default.
- W2036093555 type Work @default.
- W2036093555 sameAs 2036093555 @default.
- W2036093555 citedByCount "89" @default.
- W2036093555 countsByYear W20360935552012 @default.
- W2036093555 countsByYear W20360935552013 @default.
- W2036093555 countsByYear W20360935552014 @default.
- W2036093555 countsByYear W20360935552015 @default.
- W2036093555 countsByYear W20360935552017 @default.
- W2036093555 countsByYear W20360935552018 @default.
- W2036093555 countsByYear W20360935552019 @default.
- W2036093555 countsByYear W20360935552020 @default.
- W2036093555 countsByYear W20360935552021 @default.
- W2036093555 countsByYear W20360935552022 @default.
- W2036093555 countsByYear W20360935552023 @default.
- W2036093555 crossrefType "journal-article" @default.
- W2036093555 hasAuthorship W2036093555A5031253753 @default.
- W2036093555 hasAuthorship W2036093555A5076010762 @default.
- W2036093555 hasConcept C121332964 @default.
- W2036093555 hasConcept C127413603 @default.
- W2036093555 hasConcept C134306372 @default.
- W2036093555 hasConcept C135628077 @default.
- W2036093555 hasConcept C138885662 @default.
- W2036093555 hasConcept C153294291 @default.
- W2036093555 hasConcept C154945302 @default.
- W2036093555 hasConcept C158622935 @default.
- W2036093555 hasConcept C159985019 @default.
- W2036093555 hasConcept C173801870 @default.
- W2036093555 hasConcept C182310444 @default.
- W2036093555 hasConcept C188721877 @default.
- W2036093555 hasConcept C192562407 @default.
- W2036093555 hasConcept C202973686 @default.
- W2036093555 hasConcept C204366326 @default.
- W2036093555 hasConcept C21036866 @default.
- W2036093555 hasConcept C3161131 @default.
- W2036093555 hasConcept C33923547 @default.
- W2036093555 hasConcept C41008148 @default.
- W2036093555 hasConcept C41895202 @default.
- W2036093555 hasConcept C50644808 @default.
- W2036093555 hasConcept C62520636 @default.
- W2036093555 hasConcept C66938386 @default.
- W2036093555 hasConceptScore W2036093555C121332964 @default.
- W2036093555 hasConceptScore W2036093555C127413603 @default.
- W2036093555 hasConceptScore W2036093555C134306372 @default.
- W2036093555 hasConceptScore W2036093555C135628077 @default.
- W2036093555 hasConceptScore W2036093555C138885662 @default.
- W2036093555 hasConceptScore W2036093555C153294291 @default.
- W2036093555 hasConceptScore W2036093555C154945302 @default.
- W2036093555 hasConceptScore W2036093555C158622935 @default.
- W2036093555 hasConceptScore W2036093555C159985019 @default.
- W2036093555 hasConceptScore W2036093555C173801870 @default.
- W2036093555 hasConceptScore W2036093555C182310444 @default.
- W2036093555 hasConceptScore W2036093555C188721877 @default.
- W2036093555 hasConceptScore W2036093555C192562407 @default.
- W2036093555 hasConceptScore W2036093555C202973686 @default.
- W2036093555 hasConceptScore W2036093555C204366326 @default.
- W2036093555 hasConceptScore W2036093555C21036866 @default.
- W2036093555 hasConceptScore W2036093555C3161131 @default.
- W2036093555 hasConceptScore W2036093555C33923547 @default.
- W2036093555 hasConceptScore W2036093555C41008148 @default.
- W2036093555 hasConceptScore W2036093555C41895202 @default.
- W2036093555 hasConceptScore W2036093555C50644808 @default.
- W2036093555 hasConceptScore W2036093555C62520636 @default.
- W2036093555 hasConceptScore W2036093555C66938386 @default.
- W2036093555 hasIssue "3" @default.
- W2036093555 hasLocation W20360935551 @default.
- W2036093555 hasOpenAccess W2036093555 @default.
- W2036093555 hasPrimaryLocation W20360935551 @default.
- W2036093555 hasRelatedWork W2000192086 @default.
- W2036093555 hasRelatedWork W2358627939 @default.
- W2036093555 hasRelatedWork W2361305516 @default.
- W2036093555 hasRelatedWork W2364838656 @default.
- W2036093555 hasRelatedWork W2386630539 @default.
- W2036093555 hasRelatedWork W2400153779 @default.