Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036106454> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2036106454 endingPage "141" @default.
- W2036106454 startingPage "123" @default.
- W2036106454 abstract "Abstract We derive the best linear unbiased estimator (BLUE) based on doubly Type-II censored samples for the scaled half logistic distribution. Next, we derive the best linear unbiased estimator and the asymptotic best linear unbiased estimator based on k optimally selected order statistics and show that the asymptotic result provides very close approximation to the finite sample result even for a sample of size as small as 20. The maximum likelihood estimator (MLE) based on either complete or Type-II censored samples does not exist in explicit form. We determine its unbiasing factor and variance through Monte Carlo simulations employing a numerical iterative procedure. We derive an approximate maximum likelihood estimator (AMLE) which has an explicit form and is almost as efficient as the MLE and the BLUE. We illustrate all these methods of estimation with two examples." @default.
- W2036106454 created "2016-06-24" @default.
- W2036106454 creator A5025687625 @default.
- W2036106454 creator A5039956503 @default.
- W2036106454 date "1992-03-01" @default.
- W2036106454 modified "2023-09-27" @default.
- W2036106454 title "Estimation for the scaled half logistic distribution under Type II censoring" @default.
- W2036106454 cites W2001680749 @default.
- W2036106454 cites W2067978550 @default.
- W2036106454 cites W2149482807 @default.
- W2036106454 cites W4230730431 @default.
- W2036106454 cites W66358871 @default.
- W2036106454 doi "https://doi.org/10.1016/0167-9473(92)90001-v" @default.
- W2036106454 hasPublicationYear "1992" @default.
- W2036106454 type Work @default.
- W2036106454 sameAs 2036106454 @default.
- W2036106454 citedByCount "35" @default.
- W2036106454 countsByYear W20361064542012 @default.
- W2036106454 countsByYear W20361064542013 @default.
- W2036106454 countsByYear W20361064542014 @default.
- W2036106454 countsByYear W20361064542015 @default.
- W2036106454 countsByYear W20361064542016 @default.
- W2036106454 countsByYear W20361064542017 @default.
- W2036106454 countsByYear W20361064542018 @default.
- W2036106454 countsByYear W20361064542019 @default.
- W2036106454 countsByYear W20361064542020 @default.
- W2036106454 countsByYear W20361064542021 @default.
- W2036106454 countsByYear W20361064542023 @default.
- W2036106454 crossrefType "journal-article" @default.
- W2036106454 hasAuthorship W2036106454A5025687625 @default.
- W2036106454 hasAuthorship W2036106454A5039956503 @default.
- W2036106454 hasConcept C105795698 @default.
- W2036106454 hasConcept C137668524 @default.
- W2036106454 hasConcept C151956035 @default.
- W2036106454 hasConcept C33923547 @default.
- W2036106454 hasConceptScore W2036106454C105795698 @default.
- W2036106454 hasConceptScore W2036106454C137668524 @default.
- W2036106454 hasConceptScore W2036106454C151956035 @default.
- W2036106454 hasConceptScore W2036106454C33923547 @default.
- W2036106454 hasIssue "2" @default.
- W2036106454 hasLocation W20361064541 @default.
- W2036106454 hasOpenAccess W2036106454 @default.
- W2036106454 hasPrimaryLocation W20361064541 @default.
- W2036106454 hasRelatedWork W1592683135 @default.
- W2036106454 hasRelatedWork W2015473311 @default.
- W2036106454 hasRelatedWork W2016412672 @default.
- W2036106454 hasRelatedWork W2031778063 @default.
- W2036106454 hasRelatedWork W2037749392 @default.
- W2036106454 hasRelatedWork W2055283965 @default.
- W2036106454 hasRelatedWork W2058540533 @default.
- W2036106454 hasRelatedWork W2158699685 @default.
- W2036106454 hasRelatedWork W2328974004 @default.
- W2036106454 hasRelatedWork W3015026561 @default.
- W2036106454 hasVolume "13" @default.
- W2036106454 isParatext "false" @default.
- W2036106454 isRetracted "false" @default.
- W2036106454 magId "2036106454" @default.
- W2036106454 workType "article" @default.