Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036122709> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2036122709 endingPage "9" @default.
- W2036122709 startingPage "1" @default.
- W2036122709 abstract "A foundational problem in kernel-based learning is how to design suitable kernels. Non-Parametric Kernel Learning (NPKL) is one of the most important kernel learning methods. However, most research on NPKL has tended to focus on the semi-supervised scenario. In this paper, we propose a novel unsupervised non-parametric kernel learning method, which can seamlessly combine the spectral embedding of unlabeled data and manifold Regularized Least-Squares (RLS) to learn non-parametric kernels efficiently. The proposed algorithm enjoys a closed-form solution in each iteration, which can be efficiently computed by the Lanczos sparse eigen-decomposition technique. Meanwhile, it can be extended to supervised kernel learning naturally. Experimental results show that our proposed unsupervised non-parametric kernel learning algorithm is significantly more effective and applicable to enhance the performance of Maximum Margin Clustering (MMC). Especially, it outperforms multiple kernel learning in both unsupervised and supervised settings." @default.
- W2036122709 created "2016-06-24" @default.
- W2036122709 creator A5004357665 @default.
- W2036122709 creator A5014528965 @default.
- W2036122709 creator A5025079159 @default.
- W2036122709 date "2013-05-01" @default.
- W2036122709 modified "2023-09-27" @default.
- W2036122709 title "Unsupervised non-parametric kernel learning algorithm" @default.
- W2036122709 cites W1997254627 @default.
- W2036122709 cites W2026131661 @default.
- W2036122709 cites W2031823405 @default.
- W2036122709 cites W2035720976 @default.
- W2036122709 cites W2066639679 @default.
- W2036122709 cites W2073614810 @default.
- W2036122709 cites W2081758251 @default.
- W2036122709 cites W2114361838 @default.
- W2036122709 cites W2127069950 @default.
- W2036122709 cites W2128487019 @default.
- W2036122709 cites W2133296809 @default.
- W2036122709 cites W2149667092 @default.
- W2036122709 cites W2159788726 @default.
- W2036122709 cites W2538008885 @default.
- W2036122709 cites W53387266 @default.
- W2036122709 doi "https://doi.org/10.1016/j.knosys.2012.12.008" @default.
- W2036122709 hasPublicationYear "2013" @default.
- W2036122709 type Work @default.
- W2036122709 sameAs 2036122709 @default.
- W2036122709 citedByCount "8" @default.
- W2036122709 countsByYear W20361227092013 @default.
- W2036122709 countsByYear W20361227092014 @default.
- W2036122709 countsByYear W20361227092015 @default.
- W2036122709 countsByYear W20361227092016 @default.
- W2036122709 countsByYear W20361227092017 @default.
- W2036122709 crossrefType "journal-article" @default.
- W2036122709 hasAuthorship W2036122709A5004357665 @default.
- W2036122709 hasAuthorship W2036122709A5014528965 @default.
- W2036122709 hasAuthorship W2036122709A5025079159 @default.
- W2036122709 hasConcept C105795698 @default.
- W2036122709 hasConcept C11413529 @default.
- W2036122709 hasConcept C114614502 @default.
- W2036122709 hasConcept C117251300 @default.
- W2036122709 hasConcept C119857082 @default.
- W2036122709 hasConcept C122280245 @default.
- W2036122709 hasConcept C12267149 @default.
- W2036122709 hasConcept C134517425 @default.
- W2036122709 hasConcept C140417398 @default.
- W2036122709 hasConcept C153180895 @default.
- W2036122709 hasConcept C154945302 @default.
- W2036122709 hasConcept C160446489 @default.
- W2036122709 hasConcept C182335926 @default.
- W2036122709 hasConcept C2776879701 @default.
- W2036122709 hasConcept C33923547 @default.
- W2036122709 hasConcept C41008148 @default.
- W2036122709 hasConcept C58973888 @default.
- W2036122709 hasConcept C73555534 @default.
- W2036122709 hasConcept C74193536 @default.
- W2036122709 hasConcept C75866337 @default.
- W2036122709 hasConcept C8038995 @default.
- W2036122709 hasConceptScore W2036122709C105795698 @default.
- W2036122709 hasConceptScore W2036122709C11413529 @default.
- W2036122709 hasConceptScore W2036122709C114614502 @default.
- W2036122709 hasConceptScore W2036122709C117251300 @default.
- W2036122709 hasConceptScore W2036122709C119857082 @default.
- W2036122709 hasConceptScore W2036122709C122280245 @default.
- W2036122709 hasConceptScore W2036122709C12267149 @default.
- W2036122709 hasConceptScore W2036122709C134517425 @default.
- W2036122709 hasConceptScore W2036122709C140417398 @default.
- W2036122709 hasConceptScore W2036122709C153180895 @default.
- W2036122709 hasConceptScore W2036122709C154945302 @default.
- W2036122709 hasConceptScore W2036122709C160446489 @default.
- W2036122709 hasConceptScore W2036122709C182335926 @default.
- W2036122709 hasConceptScore W2036122709C2776879701 @default.
- W2036122709 hasConceptScore W2036122709C33923547 @default.
- W2036122709 hasConceptScore W2036122709C41008148 @default.
- W2036122709 hasConceptScore W2036122709C58973888 @default.
- W2036122709 hasConceptScore W2036122709C73555534 @default.
- W2036122709 hasConceptScore W2036122709C74193536 @default.
- W2036122709 hasConceptScore W2036122709C75866337 @default.
- W2036122709 hasConceptScore W2036122709C8038995 @default.
- W2036122709 hasLocation W20361227091 @default.
- W2036122709 hasOpenAccess W2036122709 @default.
- W2036122709 hasPrimaryLocation W20361227091 @default.
- W2036122709 hasRelatedWork W1991395427 @default.
- W2036122709 hasRelatedWork W2092483655 @default.
- W2036122709 hasRelatedWork W2119156797 @default.
- W2036122709 hasRelatedWork W2141199622 @default.
- W2036122709 hasRelatedWork W2296817697 @default.
- W2036122709 hasRelatedWork W2407185198 @default.
- W2036122709 hasRelatedWork W2621945803 @default.
- W2036122709 hasRelatedWork W2898882859 @default.
- W2036122709 hasRelatedWork W3013206934 @default.
- W2036122709 hasRelatedWork W4291669689 @default.
- W2036122709 hasVolume "44" @default.
- W2036122709 isParatext "false" @default.
- W2036122709 isRetracted "false" @default.
- W2036122709 magId "2036122709" @default.
- W2036122709 workType "article" @default.