Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036142716> ?p ?o ?g. }
- W2036142716 endingPage "2126" @default.
- W2036142716 startingPage "2079" @default.
- W2036142716 abstract "For four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3–5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range – dependent on the material – of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by ‘transition-edge’ bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: Ultra-sensitive sensing and imaging. Quantum measurement instrumentation. Advanced analogue-to-digital converters. Superconductive electronics technology." @default.
- W2036142716 created "2016-06-24" @default.
- W2036142716 creator A5000213940 @default.
- W2036142716 creator A5000663261 @default.
- W2036142716 creator A5005986773 @default.
- W2036142716 creator A5007817620 @default.
- W2036142716 creator A5014057900 @default.
- W2036142716 creator A5019973092 @default.
- W2036142716 creator A5020076242 @default.
- W2036142716 creator A5024904688 @default.
- W2036142716 creator A5029167928 @default.
- W2036142716 creator A5036899344 @default.
- W2036142716 creator A5037981743 @default.
- W2036142716 creator A5049304123 @default.
- W2036142716 creator A5053110634 @default.
- W2036142716 creator A5058449718 @default.
- W2036142716 creator A5058587009 @default.
- W2036142716 creator A5066255503 @default.
- W2036142716 creator A5066552411 @default.
- W2036142716 creator A5069441015 @default.
- W2036142716 creator A5073319112 @default.
- W2036142716 creator A5074700144 @default.
- W2036142716 creator A5077717755 @default.
- W2036142716 creator A5079877995 @default.
- W2036142716 creator A5087467699 @default.
- W2036142716 creator A5035262514 @default.
- W2036142716 date "2010-12-01" @default.
- W2036142716 modified "2023-10-06" @default.
- W2036142716 title "European roadmap on superconductive electronics – status and perspectives" @default.
- W2036142716 cites W1485300768 @default.
- W2036142716 cites W1486191554 @default.
- W2036142716 cites W1509182036 @default.
- W2036142716 cites W1607132250 @default.
- W2036142716 cites W1824082338 @default.
- W2036142716 cites W1963700510 @default.
- W2036142716 cites W1963791276 @default.
- W2036142716 cites W1964303298 @default.
- W2036142716 cites W1965594562 @default.
- W2036142716 cites W1966957622 @default.
- W2036142716 cites W1968013077 @default.
- W2036142716 cites W1968889316 @default.
- W2036142716 cites W1971064040 @default.
- W2036142716 cites W1972008442 @default.
- W2036142716 cites W1974578961 @default.
- W2036142716 cites W1977101170 @default.
- W2036142716 cites W1978460101 @default.
- W2036142716 cites W1979089304 @default.
- W2036142716 cites W1981088223 @default.
- W2036142716 cites W1981714613 @default.
- W2036142716 cites W1982436575 @default.
- W2036142716 cites W1983307560 @default.
- W2036142716 cites W1984820886 @default.
- W2036142716 cites W1985694884 @default.
- W2036142716 cites W1986296353 @default.
- W2036142716 cites W1987860267 @default.
- W2036142716 cites W1987981222 @default.
- W2036142716 cites W1988122733 @default.
- W2036142716 cites W1988886471 @default.
- W2036142716 cites W1989538270 @default.
- W2036142716 cites W1992519393 @default.
- W2036142716 cites W1993172783 @default.
- W2036142716 cites W1993615154 @default.
- W2036142716 cites W1997050405 @default.
- W2036142716 cites W1997702892 @default.
- W2036142716 cites W1998176708 @default.
- W2036142716 cites W1998275283 @default.
- W2036142716 cites W1998780001 @default.
- W2036142716 cites W2000527954 @default.
- W2036142716 cites W2001903209 @default.
- W2036142716 cites W2005662164 @default.
- W2036142716 cites W2007890340 @default.
- W2036142716 cites W2012195600 @default.
- W2036142716 cites W2013295669 @default.
- W2036142716 cites W2013745586 @default.
- W2036142716 cites W2014437371 @default.
- W2036142716 cites W2018529619 @default.
- W2036142716 cites W2021634368 @default.
- W2036142716 cites W2021744627 @default.
- W2036142716 cites W2022530170 @default.
- W2036142716 cites W2024620564 @default.
- W2036142716 cites W2024778807 @default.
- W2036142716 cites W2025107855 @default.
- W2036142716 cites W2025696409 @default.
- W2036142716 cites W2026397887 @default.
- W2036142716 cites W2028774086 @default.
- W2036142716 cites W2029500834 @default.
- W2036142716 cites W2029618159 @default.
- W2036142716 cites W2030255224 @default.
- W2036142716 cites W2030989306 @default.
- W2036142716 cites W2031350130 @default.
- W2036142716 cites W2033262734 @default.
- W2036142716 cites W2034449075 @default.
- W2036142716 cites W2034960331 @default.
- W2036142716 cites W2035805423 @default.
- W2036142716 cites W2035957367 @default.
- W2036142716 cites W2037298513 @default.
- W2036142716 cites W2042971060 @default.
- W2036142716 cites W2043680214 @default.